Mathematische Annalen

, Volume 331, Issue 4, pp 809–839 | Cite as

Fine Selmer groups of elliptic curves over p-adic Lie extensions

  • J. Coates
  • R. SujathaEmail author


Elliptic Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billot, P.: Quelques aspects de la descente sur une courbe elliptique dans le cas de réduction supersingulière. Comp. Math. 58, 341–369 (1986)Google Scholar
  2. 2.
    Coates, J., Howson, S.: Euler characteristics and elliptic curves II. J. Math. Soc. Japan 53, 175–235 (2001)Google Scholar
  3. 3.
    Coates, J., Sujatha, R.: Galois cohomology of elliptic curves. TIFR Lecture Notes Series, Narosa Publishing house, 2000Google Scholar
  4. 4.
    Coates, J., Sujatha, R., Wintenberger, J.-P.: On the Euler-Poincaré characteristics of finite dimensional p-adic Galois representations. Publ. Math. IHES 93, 107–143 (2001)CrossRefGoogle Scholar
  5. 5.
    Ferrero, B., Washington, L.: The Iwasawa invariant μp vanishes for abelian number fields. Ann. of Math. 109, 377–395 (1979)Google Scholar
  6. 6.
    Fisher, T.: Some examples of 5 and 7 descent for elliptic curves over Open image in new window. Jour. Eur. Math. Soc. 3, 169–201 (2001)CrossRefGoogle Scholar
  7. 7.
    Greenberg, R., Iwasawa theory–-past and present. In: Class field Theory–-its centenary and prospect, Adv. Stuc. Pure Math. 30, 335–385 (2001)Google Scholar
  8. 8.
    Hachimori, Y., Sharifi, R.: On the failure of pseudo-nullity of Iwasawa modules. To appear in Journal of Alg. Geom.Google Scholar
  9. 9.
    Hachimori, Y., Venjakob, O.: Completely faithful Selmer groups over Kummer extensions. Documenta Math. Extra Volume in honour of K. Kato, 2003, pp. 443–478Google Scholar
  10. 10.
    Howson, S.: Euler characteristics as invariants of Iwasawa modules. Proc. London Math. Soc. 85, 634–658 (2002)Google Scholar
  11. 11.
    Imai, H.: A remark on the rational points of abelian varieties in cyclotomic Open image in new window-extensions. Proc. Japan Acad. 51, 12–16 (1971)Google Scholar
  12. 12.
    Iwasawa, K.: On the μ-invariants of Open image in new window-extensions. In: ‘‘Number Theory, Algebraic Geometry and Commutative Algebra, in honour of Yasuo Akizuki’’, Kinokuniya, Tokyo, 1973, pp. 1–11Google Scholar
  13. 13.
    Iwasawa, K.: On Open image in new window-extensions of algebraic number fields. Ann. of Math. 98, 246–326 (1973)Google Scholar
  14. 14.
    Jannsen, U.: Iwasawa modules up to isomorphism. Adv. Stud. in Pure Math. 17, 171–207 (1989)Google Scholar
  15. 15.
    Jannsen, U.: A spectral sequence for Iwasawa adjoints. Preprint, URL:
  16. 16.
    Kurihara, M.: On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I. Invent. Math. 149, 195–224 (2002)CrossRefGoogle Scholar
  17. 17.
    McCallum, W., Sharifi, R.: A cup product in the Galois cohomology of number fields. To appear in Duke Math. J.Google Scholar
  18. 18.
    Mazur, B.: Rational points of abelian varieties in towers of number fields. Invent. Math. 18, 183–266 (1972)Google Scholar
  19. 19.
    Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of number fields. Grundlehren der Math. 323, Springer, 2002Google Scholar
  20. 20.
    Ochi, Y., Venjakob, O.: On the ranks of Iwasawa modules over p-adic Lie extensions. Math. Proc. Camb. Phil. Soc. 135, 25–43 (2003)CrossRefGoogle Scholar
  21. 21.
    Ochi, Y., Venjakob, O.: On the structure of Selmer groups over p-adic Lie extensions. J. Alg. Geom. 11, 547–576 (2002)Google Scholar
  22. 22.
    Perrin-Riou, B.: Fonctions L p-adiques des représentations p-adiques. Astérisque 229, 1995Google Scholar
  23. 23.
    Perrin-Riou, B.: Arithmétique des courbes elliptiques et théorie d’Iwasawa. Mém. SMF 17, 1984Google Scholar
  24. 24.
    Schneider, P.: p-adic height pairings II. Invent. Math. 79, 329–374 (1985)Google Scholar
  25. 25.
    Sharifi, R.: Massey products and Ideal class groups. Preprint, 2003Google Scholar
  26. 26.
    Sinnott, W.: On the μ-invariant of the Γ-transform of a rational function. Invent. Math. 75, 273–282 (1984)Google Scholar
  27. 27.
    Tate, J.: Relations between K2 and Galois cohomology. Invent. Math. 36, 257–274 (1976)Google Scholar
  28. 28.
    Venjakob, O.: On the structure theory of the Iwasawa algebra of a p-adic Lie group. J. Eur. Math. Soc. 4, 271–311 (2002)CrossRefGoogle Scholar
  29. 29.
    Venjakob, O.: A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory. Crelle J. 559, 153–191 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.DPMMSUniversity of Cambridge, Centre for Mathematical SciencesCambridgeEngland
  2. 2.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations