Mathematische Annalen

, Volume 331, Issue 4, pp 809–839

Fine Selmer groups of elliptic curves over p-adic Lie extensions

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Billot, P.: Quelques aspects de la descente sur une courbe elliptique dans le cas de réduction supersingulière. Comp. Math. 58, 341–369 (1986)Google Scholar
  2. 2.
    Coates, J., Howson, S.: Euler characteristics and elliptic curves II. J. Math. Soc. Japan 53, 175–235 (2001)Google Scholar
  3. 3.
    Coates, J., Sujatha, R.: Galois cohomology of elliptic curves. TIFR Lecture Notes Series, Narosa Publishing house, 2000Google Scholar
  4. 4.
    Coates, J., Sujatha, R., Wintenberger, J.-P.: On the Euler-Poincaré characteristics of finite dimensional p-adic Galois representations. Publ. Math. IHES 93, 107–143 (2001)CrossRefGoogle Scholar
  5. 5.
    Ferrero, B., Washington, L.: The Iwasawa invariant μp vanishes for abelian number fields. Ann. of Math. 109, 377–395 (1979)Google Scholar
  6. 6.
    Fisher, T.: Some examples of 5 and 7 descent for elliptic curves over Open image in new window. Jour. Eur. Math. Soc. 3, 169–201 (2001)CrossRefGoogle Scholar
  7. 7.
    Greenberg, R., Iwasawa theory–-past and present. In: Class field Theory–-its centenary and prospect, Adv. Stuc. Pure Math. 30, 335–385 (2001)Google Scholar
  8. 8.
    Hachimori, Y., Sharifi, R.: On the failure of pseudo-nullity of Iwasawa modules. To appear in Journal of Alg. Geom.Google Scholar
  9. 9.
    Hachimori, Y., Venjakob, O.: Completely faithful Selmer groups over Kummer extensions. Documenta Math. Extra Volume in honour of K. Kato, 2003, pp. 443–478Google Scholar
  10. 10.
    Howson, S.: Euler characteristics as invariants of Iwasawa modules. Proc. London Math. Soc. 85, 634–658 (2002)Google Scholar
  11. 11.
    Imai, H.: A remark on the rational points of abelian varieties in cyclotomic Open image in new window-extensions. Proc. Japan Acad. 51, 12–16 (1971)Google Scholar
  12. 12.
    Iwasawa, K.: On the μ-invariants of Open image in new window-extensions. In: ‘‘Number Theory, Algebraic Geometry and Commutative Algebra, in honour of Yasuo Akizuki’’, Kinokuniya, Tokyo, 1973, pp. 1–11Google Scholar
  13. 13.
    Iwasawa, K.: On Open image in new window-extensions of algebraic number fields. Ann. of Math. 98, 246–326 (1973)Google Scholar
  14. 14.
    Jannsen, U.: Iwasawa modules up to isomorphism. Adv. Stud. in Pure Math. 17, 171–207 (1989)Google Scholar
  15. 15.
    Jannsen, U.: A spectral sequence for Iwasawa adjoints. Preprint, URL:http://www.mathematik.uni-regensburg.de/Jannsen/#Preprints
  16. 16.
    Kurihara, M.: On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I. Invent. Math. 149, 195–224 (2002)CrossRefGoogle Scholar
  17. 17.
    McCallum, W., Sharifi, R.: A cup product in the Galois cohomology of number fields. To appear in Duke Math. J.Google Scholar
  18. 18.
    Mazur, B.: Rational points of abelian varieties in towers of number fields. Invent. Math. 18, 183–266 (1972)Google Scholar
  19. 19.
    Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of number fields. Grundlehren der Math. 323, Springer, 2002Google Scholar
  20. 20.
    Ochi, Y., Venjakob, O.: On the ranks of Iwasawa modules over p-adic Lie extensions. Math. Proc. Camb. Phil. Soc. 135, 25–43 (2003)CrossRefGoogle Scholar
  21. 21.
    Ochi, Y., Venjakob, O.: On the structure of Selmer groups over p-adic Lie extensions. J. Alg. Geom. 11, 547–576 (2002)Google Scholar
  22. 22.
    Perrin-Riou, B.: Fonctions L p-adiques des représentations p-adiques. Astérisque 229, 1995Google Scholar
  23. 23.
    Perrin-Riou, B.: Arithmétique des courbes elliptiques et théorie d’Iwasawa. Mém. SMF 17, 1984Google Scholar
  24. 24.
    Schneider, P.: p-adic height pairings II. Invent. Math. 79, 329–374 (1985)Google Scholar
  25. 25.
    Sharifi, R.: Massey products and Ideal class groups. Preprint, 2003Google Scholar
  26. 26.
    Sinnott, W.: On the μ-invariant of the Γ-transform of a rational function. Invent. Math. 75, 273–282 (1984)Google Scholar
  27. 27.
    Tate, J.: Relations between K2 and Galois cohomology. Invent. Math. 36, 257–274 (1976)Google Scholar
  28. 28.
    Venjakob, O.: On the structure theory of the Iwasawa algebra of a p-adic Lie group. J. Eur. Math. Soc. 4, 271–311 (2002)CrossRefGoogle Scholar
  29. 29.
    Venjakob, O.: A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory. Crelle J. 559, 153–191 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.DPMMSUniversity of Cambridge, Centre for Mathematical SciencesCambridgeEngland
  2. 2.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations