Mathematische Annalen

, Volume 331, Issue 1, pp 219–239 | Cite as

Coefficients of half-integral weight modular forms modulo ℓ j

Article

Abstract.

Suppose that ℓ≥5 is prime, that j≥0 is an integer, and that F(z) is a half-integral weight modular form with integral Fourier coefficients. We give some general conditions under which the coefficients of F are “well-distributed” modulo ℓ j . As a consequence, we settle many cases of a classical conjecture of Newman by proving, for each prime power ℓ j with ℓ≥5, that the ordinary partition function p(n) takes each value modulo ℓ j infinitely often.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlgren, S.: The partition function modulo composite integers M. Math. Ann. 318, 795–803 (2000)MATHGoogle Scholar
  2. 2.
    Ahlgren, S., Boylan, M.: Arithmetic properties of the partition function. Invent. Math. 153(3), 487–502 (2003)MATHGoogle Scholar
  3. 3.
    Ahlgren, S., Ono, K.: Congruence properties for the partition function. Proc. Nat. Acad. Sci. 98(23), 12882–12884 (2001)MATHGoogle Scholar
  4. 4.
    Ahlgren, S., Ono, K.: Congruences and conjectures for the partition function. Contemp. Math. 291, 1–10 (2001)MATHGoogle Scholar
  5. 5.
    Atkin, A. O. L.: Multiplicative congruence properties and density problems for p(n). Proc. London Math. Soc. (3) 18, 563–576 (1968)Google Scholar
  6. 6.
    Balog, A., Darmon, H., Ono, K.: Congruences for Fourier coefficients of half-integral weight modular forms and special values of L-functions. Proceedings for a conference in honor of Heini Halberstam, vol. 1 Birkhäuser Boston, MA 1996 pp. 105–127Google Scholar
  7. 7.
    Bruinier, J.: Non-vanishing modulo ℓ of Fourier coefficients of half-integral weight modular forms. Duke Math. J. 98, 595–611 (1999)MATHGoogle Scholar
  8. 8.
    Bruinier, J., Ono, K.: Fourier coefficients of half-integral weight modular forms. J. Number Th. 99, 164–179 (2003)MATHGoogle Scholar
  9. 9.
    Bruinier, J., Ono, K.: Fourier coefficients of half-integral weight modular forms (corrigendum). J. Number Th. 104, 378–379 (2004)MATHGoogle Scholar
  10. 10.
    Deligne, P., Serre, J.-P.: Formes modulaires de poids 1. Ann. Sci. École Normale Sup. 4e sér. 7, 507–530(1974)Google Scholar
  11. 11.
    Gross, B.H.: A tameness criterion for Galois representations attached to modular forms (mod p). Duke Math. J. 61(2), 445–517 (1990)MATHGoogle Scholar
  12. 12.
    Gorenstein, D.: Finite Groups. Chelsea Publishing Company, New York 1980Google Scholar
  13. 13.
    Hida, H.: Elementary theory of L-functions and Eisenstein series. London Mathematical Society Student Texts, 26, Cambridge University Press, 1993Google Scholar
  14. 14.
    Katz, N.: A result on modular forms in characteristic p. Lecture Notes in Math. vol. 601 (Modular functions of one variable, V)(1977), Springer Verlag Berlin, pp. 53–61Google Scholar
  15. 15.
    Kløve, T.: Recurrence formulae for the coefficients of modular forms and congruences for the partition function and for the coefficients of j(τ), (j(τ)-1728)1/2, and j(τ)1/3. Math. Scand. 23, 133–159 (1969)Google Scholar
  16. 16.
    Koblitz, N.: Introduction to elliptic curves and modular forms. Springer-Verlag, New York, Graduate Texts in Mathematics, No. 97, 1984Google Scholar
  17. 17.
    Kolberg, O.: Note on the parity of the partition function. Math. Scand. 7, 377–378 (1959)MATHGoogle Scholar
  18. 18.
    Newman, M.: Periodicity modulo m and divisibility properties of the partition function. Trans. Amer. Math. Soc. 97, 225–236 (1960)MATHGoogle Scholar
  19. 19.
    Ono, K.: Distribution of the partition function modulo m. Ann. Math. 151, 293–307 (2000)MATHGoogle Scholar
  20. 20.
    Ribet, K.: On ℓ-adic representations attached to modular forms. Invent. Math. 28, 245–275 (1975)MATHGoogle Scholar
  21. 21.
    Ribet, K.: On ℓ-adic representations attached to modular forms, II. Glasgow Math. J. 27, 185–194 (1985)MATHGoogle Scholar
  22. 22.
    Serre, J.-P.: Congruences et formes modulaires (d’après Swinnerton-Dyer). Sém. Bourbaki 416, 319–338 (1971–1972)Google Scholar
  23. 23.
    Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15, 259–331 (1972)MATHGoogle Scholar
  24. 24.
    Shimura, G.: On modular forms of half-integral weight. Ann. Math. 97, 440–481 (1973)MATHGoogle Scholar
  25. 25.
    Swinnerton-Dyer, H. P. F.: On ℓ-adic representations and congruences for modular forms. Lecture Notes in Math., vol. 350 (Modular functions of one variable III)(1973), Springer-Verlag Berlin, pp. 1–55Google Scholar
  26. 26.
    Vignéras, M. F.: Facteurs gamma et équations fonctionelles Lecture Notes in Math. vol. 627 (Modular functions of one variable VI)(1977), Springer-Verlag Berlin pp. 79–103Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations