Mathematische Annalen

, Volume 329, Issue 2, pp 365–377

Construction of some families of 2-dimensional crystalline representations

Article

Abstract.

We construct explicitly some analytic families of étale (φ,Γ)-modules, which give rise to analytic families of 2-dimensional crystalline representations. As an application of our constructions, we verify some conjectures of Breuil on the reduction modulo p of those representations, and extend some results (of Deligne, Edixhoven, Fontaine and Serre) on the representations arising from modular forms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, L.: Limites de représentations cristallines. To appear in Compositio MathematicaGoogle Scholar
  2. 2.
    Berger, L., Colmez P.: Familles de représentations p-adiques. In preparationGoogle Scholar
  3. 3.
    Breuil, C.: Représentations semi-stables et modules fortement divisibles. Invent. Math. 136, 89–122 (1999)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Breuil, C.: Integral p-adic Hodge theory. Algebraic geometry 2000, Azumino (Hotaka), 51–80, Adv. Stud. Pure Math., 36, Math. Soc. Japan, Tokyo, 2002Google Scholar
  5. 5.
    Breuil, C.: Sur quelques représentations modulaires et p-adiques de GL2(Q p) II. J. Inst. Math. Jussieu 2, 23–58 (2003)CrossRefMATHGoogle Scholar
  6. 6.
    Breuil, C., Mézard, A.: Multiplicités modulaires et représentations de GL2 (Z p) et de Gal Open image in new window en l=p. With an appendix by Guy Henniart. Duke Math. J. 115, 205–310 (2002)Google Scholar
  7. 7.
    Colmez, P.: Représentations cristallines et représentations de hauteur finie. J. Reine Angew. Math. 514, 119–143 (1999)MathSciNetMATHGoogle Scholar
  8. 8.
    Colmez, P.: Espaces de Banach de dimension finie. J. Inst. Math. Jussieu 1, 331–439 (2002)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Colmez, P., Fontaine, J-M.: Construction des représentations p-adiques semi-stables. Invent. Math. 140, 1–43 (2000)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Dee, J.: Φ-Γ modules for families of Galois representations. J. Algebra 235, 636–664 (2001)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Edixhoven, B.: The weight in Serre’s conjectures on modular forms. Invent. Math. 109, 563–594 (1992)MathSciNetMATHGoogle Scholar
  12. 12.
    Fontaine, J-M.: Le corps des périodes p-adiques. Périodes p-adiques (Bures-sur-Yvette, 1988). Astérisque 223, 59–111 (1994)Google Scholar
  13. 13.
    Fontaine, J-M.: Représentations p-adiques semi-stables. Périodes p-adiques, (Bures-sur-Yvette, 1988). Astérisque 223, 113–184 (1994)Google Scholar
  14. 14.
    Fontaine, J-M.: Représentations p-adiques des corps locaux I. The Grothendieck Festschrift, Vol. II, 249–309, Progr. Math. 87, Birkhäuser Boston, Boston, MA 1990Google Scholar
  15. 15.
    Fontaine, J-M., Laffaille, G.: Construction de représentations p-adiques. Ann. Sci. École Norm. Sup. 15(4), 547–608 (1983)MATHGoogle Scholar
  16. 16.
    Wach, N.: Représentations p-adiques potentiellement cristallines. Bull. Soc. Math. France 124, 375–400 (1996)MathSciNetMATHGoogle Scholar
  17. 17.
    Wach, N.: Représentations cristallines de torsion. Compositio Math. 108, 185–240 (1997)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of MathematicsCambridgeUSA
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada
  3. 3.Department of MathematicsMcMaster UniversityHamiltonCanada

Personalised recommendations