Mathematische Annalen

, Volume 330, Issue 1, pp 17–38 | Cite as

Non injectivity of the q-deformed von Neumann algebra



In this paper we prove that the von Neumann algebra generated by q-gaussians is not injective as soon as the dimension of the underlying Hilbert space is greater than 1. Our approach is based on a suitable vector valued Khintchine type inequality for Wick products. The same proof also works for the more general setting of a Yang-Baxter deformation. Our techniques can also be extended to the so called q-Araki-Woods von Neumann algebras recently introduced by Hiai. In this latter case, we obtain the non injectivity under some asssumption on the spectral set of the positive operator associated with the deformation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bozejko, M.: Completely positive maps on Coxeter groups and the ultracontractivity of the q-Ornstein-Uhlenbeck semigroup, Banach Center Publications, vol.43, (1999), pp. 87-93; Institute of Mathematics, Polish Academy of Sciences, WarsawaGoogle Scholar
  2. 2.
    Bozejko, M.: Ultracontractivity and strong Sobolev inequality for q-Ornstein-Uhlenbeck semigroup (-1<q<1), Infinite Dimensional Analysis, Quantum Probability and Related Topics. 2, 203–220 (1998)Google Scholar
  3. 3.
    Bozejko, M., Kummerer, B., Speicher, R.: q-Gaussian processes: Non-commutative and classical aspects. Commun. Math. Phys. 185, 129–154 (1997)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Bozejko, M., Speicher, R.: Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces. Math. Ann. 300, 97–120 (1994)MathSciNetMATHGoogle Scholar
  5. 5.
    Bozejko, M., Speicher, R.: Interpolation between bosonic and fermionic relation given by generalized Brownian motions. Math. Z. 222, 135–160 (1996)MathSciNetMATHGoogle Scholar
  6. 6.
    Buchholz, A.: Free Khintchine-Haagerup inequality. Proc. AMSGoogle Scholar
  7. 7.
    Buchholz, A.: L-Khintchine-Bonami inequality in the free probability. Quantum Probability, Banach Center Publications 43, 105–109 (1998)Google Scholar
  8. 8.
    Choi, M-D., Effros, E.: Injectivity and Operator spaces. Journal of functional analysis 24, 156–209 (1977)MATHGoogle Scholar
  9. 9.
    Christensen, E., Sinclair,~A.: Representations of completely bounded multilinear operators. Journal of Functional analysis 72, 151–181 (1987)MathSciNetMATHGoogle Scholar
  10. 10.
    Effros, E., Ruan, Z.-J.: Operators spaces. Oxford University Press, Oxford, 2000Google Scholar
  11. 11.
    Haagerup, U., Pisier, G.: Bounded linear operators between C*-algebras. Duke Math. J. 71, 889–925 (1993)MathSciNetMATHGoogle Scholar
  12. 12.
    Hiai, F.: q-Deformed Araki-Woods algebras. PreprintGoogle Scholar
  13. 13.
    Krolak, I.: Wick product for commutation relations connected with Yang-Baxter operators and new constructions of factors. Commun. Math. Phys. 210, 685–701 (2000)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Pisier, G.: An introduction to operator spaces. Cambridge Press. 2003Google Scholar
  15. 15.
    Pisier, G., Shlyakhtenko, D.: Grothendieck’s Theorem for Operator Spaces. Inventiones Mathematicae 150, 185-217 (2002)CrossRefMATHGoogle Scholar
  16. 16.
    Shlyakhtenko, D.: Free quasi-free states. Pacific J. Math. 177, 329–368 (1997)MathSciNetMATHGoogle Scholar
  17. 17.
    Voiculescu, D.: Symmetries of some reduced free product of C*-algebras, Operator Algebras and Ergodic Theory. Lect. Notes in Math. Springer, 1132, 556–588 (1995)Google Scholar
  18. 18.
    Voiculescu, D., Dykema, K., Nica, A.: Free Random variables. CRM Monograph Series, Vol. 1, Centre Recherches Mathématiques, Université de Montréal, 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Université de Franche-Comté - BesançonU.F.R des Sciences et TechniquesBesancon CedexFrance

Personalised recommendations