Mathematische Annalen

, Volume 328, Issue 1–2, pp 135–171 | Cite as

Grope cobordism and feynman diagrams

Article

Abstract

We explain how the usual algebras of Feynman diagrams behave under the grope degree introduced in [CT]. We show that the Kontsevich integral rationally classifies grope cobordisms of knots in 3-space when the ‘‘class’’ is used to organize gropes. This implies that the grope cobordism equivalence relations are highly nontrivial in dimension 3. We also show that the class is not a useful organizing complexity in 4 dimensions since only the Arf invariant survives. In contrast, measuring gropes according to ‘‘height’’ does lead to very interesting 4-dimensional information [COT]. Finally, several low degree calculations are explained, in particular we show that S-equivalence is the same relation as grope cobordism based on the smallest tree with an internal vertex.

Key words or phrases

Grope cobordism Feynman diagrams Vassiliev invariants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Natan, D., Garoufalidis, S., Rozansky, L., Thurston, D.P.: The Aarhus integral of rational homology 3-spheres II: Invariance and universality. math.GT/9801049, Selecta Math. 8, 341–371 (2002)Google Scholar
  2. 2.
    Bar-Natan, D.: On the Vassiliev knot invariants. Topology 34, 423-472Google Scholar
  3. 3.
    Cochran, T.: Derivatives of links: Milnor’s concordance invariants and Massey’s products. Mem. Amer. Math. Soc. 84, (1990)Google Scholar
  4. 4.
    Cochran, T., Orr, K., Teichner, P.: Knot concordance, Whitney Towers, and L 2-signatures. math.GT/9908117, to appear in the Annals of MathGoogle Scholar
  5. 5.
    Cochran, T., Teichner, P.: Von Neumann η-invariants and grope concordance. In preparationGoogle Scholar
  6. 6.
    Conant, J.: A knot bounding a grope of class n is ⌈ \(\frac{n}{2}\) ⌉-trivial. math.GT/9907158Google Scholar
  7. 7.
    Conant, J.: On a theorem of Goussarov. J. Knot Theory Ramifications 12, 47–52 (2003)CrossRefMATHGoogle Scholar
  8. 8.
    Conant, J., Schneiderman, R., Teichner, P.: A topological IHX relation in three and four dimensions. In preparationGoogle Scholar
  9. 9.
    Conant, J., Teichner, P.: Grope cobordism of classical knots. math.GT/0012118, to appear in TopologyGoogle Scholar
  10. 10.
    Goussarov (Gusarov), M.: On n-equivalence of knots and invariants of finite degree, Topology of Manifolds and Varieties. Adv. Sov. Math. 18, Amer. Math. Soc., 1994, pp. 173–192Google Scholar
  11. 11.
    Goussarov, M.: Variations of knotted graphs: Geometric techniques of n-equivalence. Algebra i Analiz 12, 79–125 (2000); translation in St. Petersburg Math. J. 12, 569–604 (2001)Google Scholar
  12. 12.
    Garoufalidis S., Rozansky, L.: The loop expansion of the Kontsevich integral, abelian invariants of knots and S-equivalence. math.GT/0003187, to appear in TopologyGoogle Scholar
  13. 13.
    Garoufalidis S., Levine, J.: Concordance and 1-loop clovers. math.GT/0102102, Algebr. Geom. Topol. 1, 687–697 (2001) (electronic)Google Scholar
  14. 14.
    Garoufalidis, S., Goussarov, M., Polyak, M.: Calculus of clovers and finite type invariants of 3-manifolds. Geom. Topol. 5, 75–108 (2001)MathSciNetGoogle Scholar
  15. 15.
    Garoufalidis, S., Teichner, P.: On Knots with trivial Alexander polynomial. math.GT/0206023Google Scholar
  16. 16.
    Habiro, K.: Claspers and the Vassiliev skein modules. Preprint 1999Google Scholar
  17. 17.
    Habiro, K.: Claspers and finite type invariants of links. Geometry and Topology 4, 1–83 (2000)MathSciNetMATHGoogle Scholar
  18. 18.
    Matveev, S.V.: Generalized surgery of three-dimensional manifolds and representations of homology spheres. Math. Notices Acad. Sci. USSR 42, 651–656 (1987)MATHGoogle Scholar
  19. 19.
    Murakami, H., Nakanishi, Y.: On a certain move generating link-homology. Math. Ann. 284, 75–89 (1989)MathSciNetMATHGoogle Scholar
  20. 20.
    Murakami, H., Ohtsuki, T.: Finite type invariants of knots via their Seifert matrices. math.GT/9903069Google Scholar
  21. 21.
    Naik, S., Stanford, T.: A move on diagrams that generates S-equivalence of knots. math.GT/9911005Google Scholar
  22. 22.
    Ng, K.Y.: Groups of ribbon knots. Topology 37, 441–458Google Scholar
  23. 23.
    Stanford, T.: Private communicationGoogle Scholar
  24. 24.
    Thurston, D.P.: Wheeling: A diagrammatic analogue of the Duflo isomorphism. Ph.D. Thesis, UC Berkeley, 2000Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of MathematicsCornell UniversityIthacaUSA
  2. 2.Department of MathematicsUniversity of California in San Diego

Personalised recommendations