Mathematische Annalen

, Volume 327, Issue 4, pp 745–771

On bounded and unbounded global solutions of a supercritical semilinear heat equation



We consider the Cauchy problem where u0C0(ℝN), the space of all continuous functions on ℝN that decay to zero at infinity, and p is supercritical in the sense that N≥11 and \({{p\ge ((N-2)^2-4N+8\sqrt{{N-1}})/{{(N-2)(N-10)}}}}\). We first examine the domain of attraction of steady states (and also of general solutions) in a class of admissible functions. In particular, we give a sharp condition on the initial function u0 so that the solution of the above problem converges to a given steady state. Then we consider the asymptotic behavior of global solutions bounded above and below by classical steady states (such solutions have compact trajectories in C0(ℝN), under the supremum norm). Our main result reveals an interesting possibility: the solution may approach a continuum of steady states, not settling down to any particular one of them. Finally, we prove the existence of global unbounded solutions, a phenomenon that does not occur for Sobolev-subcritical exponents.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, W.X., Li, C.: Qualitative properties of solutions to some nonlinear elliptic equations in ℝn. Duke Math. J. 71, 427–439 (1993)MathSciNetMATHGoogle Scholar
  2. 2.
    Collet, P., Eckmann, J.-P.: Space-time behaviour in problems of hydrodynamic type: a case study. Nonlinearity 5, 1265–1302 (1992)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Dold, J.W., Galaktionov, V.A., Lacey, A.A., Vazquez, J.L.: Rate of approach to a singular steady state in quasilinear reaction-diffusion equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (26), 663–687 (1998)MATHGoogle Scholar
  4. 4.
    Friedman, A.: Partial differential equations of parabolic type. Prentice-Hall Inc., Englewood Cliffs, N.J., 1964Google Scholar
  5. 5.
    Fujita, H.: On the blowing up of solutions of the Cauchy problem for u tu+u 1+α. J. Fac. Sci. Univ. Tokyo Sect. I 13, 109–124 (1966)MATHGoogle Scholar
  6. 6.
    Galaktionov, V.A., Vazquez, J.L.: Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Comm. Pure Appl. Math. 50, 1–67 (1997)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Gallay, T., Slijepĉević, S.: Energy flow in extended gradient partial differential equations. J. Dynam. Diff. Eqs. 13, 757–789 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in ℝn. In: Mathematical analysis and applications, Part A. Academic Press, New York, 1981, pp. 369–402Google Scholar
  9. 9.
    Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34, 525–598 (1981)MathSciNetMATHGoogle Scholar
  10. 10.
    Gui, C., Ni, W.-M., Wang, X.: On the stability and instability of positive steady states of a semilinear heat equation in ℝn. Comm. Pure Appl. Math. 45, 1153–1181 (1992)MathSciNetMATHGoogle Scholar
  11. 11.
    Gui, C., Ni, W.-M., Wang, X.: Further study on a nonlinear heat equation. J. Diff. Eqs. 169, 588–613 (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Henry, D.: Geometric theory of semilinear parabolic equations. Springer-Verlag, New York, 1981Google Scholar
  13. 13.
    Herrero, M.A., Velazquez, J.J.L.: A blow up result for semilinear heat equations in the supercritical case. PreprintGoogle Scholar
  14. 14.
    Hess, P.: Periodic-parabolic boundary value problems and positivity. Longman Scientific & Technical, Harlow, 1991Google Scholar
  15. 15.
    Joseph, D.D., Lundgren, T.S.: Quasilinear Dirichlet problems driven by positive sources. Arch. Ration. Mech. Anal. 49 (73), 241–269 (1972)MATHGoogle Scholar
  16. 16.
    Kavian, O.: Remarks on the large time behaviour of a nonlinear diffusion equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 4, 423–452 (1987)MathSciNetMATHGoogle Scholar
  17. 17.
    Levine, H.A.: The role of critical exponents in blowup theorems. SIAM Rev. 32, 262–288 (1990)MathSciNetMATHGoogle Scholar
  18. 18.
    Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems. Birkhäuser, Berlin, 1995Google Scholar
  19. 19.
    Matos, J., Souplet, P.: Universal blow-up rates for a semilinear heat equation and applications. Adv. Differential Equations 8, 615–639 (2003)Google Scholar
  20. 20.
    Mizoguchi, N.: On the behavior of solutions for a semilinear parabolic equation with supercritical nonlinearity. Math. Z. 239, 215–229 (2002)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Protter, M.H., Weinberger, H.F.: Maximum principles in differential equations. Prentice–Hall, New York, 1967Google Scholar
  22. 22.
    Smith, H.L.: Monotone dynamical systems. American Mathematical Society, Providence, RI, 1995Google Scholar
  23. 23.
    Souplet, P.: Sur l’asymptotique des solutions globales pour une équation de la chaleur semi-linéaire dans des domaines non bornés, C. R. Acad. Sci. Paris Sér. I Math. 323, 877–882 (1996)MathSciNetMATHGoogle Scholar
  24. 24.
    Vazquez, J.L., Zuazua, E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173, 103–153 (2000)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Wang, X.: On the Cauchy problem for reaction-diffusion equations. Trans. Am. Math. Soc. 337, 549–590 (1993)MathSciNetMATHGoogle Scholar
  26. 26.
    Zou, H.: Symmetry of positive solutions of Δ u+u p=0 in ℝn. J. Diff. Eqs. 120, 46–88 (1995)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Mathematical InstituteTohoku UniversitySendaiJapan

Personalised recommendations