Mathematische Annalen

, Volume 327, Issue 2, pp 339–349 | Cite as

The Bergman metric on complete Kähler manifolds

Article

Abstract.

We use the existence of a bounded uniformly Hölder continuous plurisubharmonic exhaustion function to characterize the Bergman completeness of a complete Kähler manifold. As an application, we proved that any simply-connected complete Kähler manifold with sectional curvature bounded above by a negative constant is Bergman complete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berndtsson, B.: The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman. Ann. Inst. Fourier (Grenoble) 46, 1083–1094 (1996)MathSciNetGoogle Scholar
  2. 2.
    Berndtsson, B., Charpentier, Ph.: A Sobolev mapping property of the Bergman kernel. Math. Z. 235, 1–10 (2000)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Blocki, Z., Pflug, P.: Hyperconvexity and Bergman completeness. Nagoya J. Math. 151, 221–225 (1998)MATHGoogle Scholar
  4. 4.
    Chen, B.Y., Zhang, J.H.: Bergman exhaustivity, completeness and stability. Adv. Math. (Chinese) 29, 397–410 (2000)MATHGoogle Scholar
  5. 5.
    Demailly, J.P.: Estimations L 2 pour l'opérateur d'un fibré vectoriel holomorphe semi-positiv au dessus d'une variété kählérienne complète. Ann. Sci. Ec. Norm. Sup. 15, 457–511 (1982)MathSciNetMATHGoogle Scholar
  6. 6.
    Diederich, K., Ohsawa, T.: An estimate for the Bergman distance on pseudoconvex domains. Ann. Math. 141, 181–190 (1995)MathSciNetMATHGoogle Scholar
  7. 7.
    Donnelly, H., Fefferman, C.: L 2–cohomology and index theorem for the Bergman metric. Ann. Math. 118, 593–618 (1983)MathSciNetMATHGoogle Scholar
  8. 8.
    Farkas, H.M., Kra, I.: Riemann surfaces. GTM 71, Springer-Verlag, 1980Google Scholar
  9. 9.
    Greene, R.E., Wu, H.: Function theory on manifolds which possess a pole. Lecture Notes in Mathematics 699, Springer-Verlag, 1979Google Scholar
  10. 10.
    Herbort, G.: The Bergman metric on hyperconvex domains. Math. Z. 232, 183–196 (1999)MathSciNetMATHGoogle Scholar
  11. 11.
    Hörmander, L.: An introduction to Complex Analysis in Several Variables. North Holland, 1990Google Scholar
  12. 12.
    Kerzman, N., Rosay, J.P.: Fonctions plurisousharmonique d'exhaustion borées et domaines taut. Math. Ann. 257, 171–184 (1981)Google Scholar
  13. 13.
    Kobayashi, S.: Geometry of bounded domains. Trans. Amer. Math. Soc. 92, 267–290 (1959)MATHGoogle Scholar
  14. 14.
    Kobayashi, S.: Hyperbolic Complex spaces. A Series of Comprehensive Studies in Mathematics 318, Springer-Verlag, 1998Google Scholar
  15. 15.
    Ohsawa, T.: Boundary behavior of the Bergman kernel function on pseudoconvex domains. Publ. RIMS, Kyoto Univ. 20, 897–902 (1984)Google Scholar
  16. 16.
    Zwonek, W.: Completeness, Reinhardt domains and the method of complex geodesics in the theory of invariant functions. Dissertations. Math. 388, 103 pp. (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of Applied MathematicsTongji UniversityShanghaiP.R. China
  2. 2.Graduate School of MathematicsNagoya UniversityChikusa-kuJapan

Personalised recommendations