Mathematische Annalen

, Volume 327, Issue 1, pp 191–201

Differentiable perturbation of unbounded operators

Article

Abstract.

If A(t) is a C1,α-curve of unbounded self-adjoint operators with compact resolvents and common domain of definition, then the eigenvalues can be parameterized C1 in t. If A is C then the eigenvalues can be parameterized twice differentiably.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseevsky, D., Kriegl, A., Losik, M., Michor, P.W.: Choosing roots of polynomials smoothly. Israel J. Math. 105, 203–233 (1998). math.CA/9801026CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Baumgärtel, H.: Endlichdimensionale analytische Störungstheorie, Akademie-Verlag, Berlin, 1972Google Scholar
  3. 3.
    Dieudonné, J.: Foundations of modern analysis, I, Academic Press, New York, 1960Google Scholar
  4. 4.
    Faure, C.-A., Frölicher, A.: Hölder differentiable maps and their function spaces. Categorical topology and its relation to analysis, algebra and combinatorics (Prague, 1988) World Sci. Publishing, Teaneck, NJ 1989, pp. 135–142Google Scholar
  5. 5.
    Frölicher, A., Kriegl, A.: Linear spaces and differentiation theory. Pure and Applied Mathematics, J. Wiley, Chichester, 1988Google Scholar
  6. 6.
    Kato, T.: Perturbation theory for linear operators. Grundlehren 132, Springer-Verlag, Berlin, 1976Google Scholar
  7. 7.
    Kriegl, A., Losik, M., Michor, P.W.: Choosing roots of polynomials smoothly, II. 2002. arXiv:math.CA/0208228Google Scholar
  8. 8.
    Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Surveys and Monographs, vol. 53, AMS, Providence, 1997. http://www.ams.org/onlinebks/surv53/Google Scholar
  9. 9.
    Rellich, F.: Störungstheorie der Spektralzerlegung, I. Math. Ann. 113, 600–619 (1937)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Rellich, F.: Störungstheorie der Spektralzerlegung, V. Math. Ann. 118, 462–484 (1940)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Rellich, F.: Perturbation theory of eigenvalue problems. Lecture Notes. New York University, 1953; Gordon and Breach, New York, London, Paris, 1969Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Institut für MathematikUniversität WienWienAustria
  2. 2.Erwin Schrödinger Institute of Mathematical PhysicsWienAustria

Personalised recommendations