Mathematische Annalen

, Volume 327, Issue 1, pp 79–102 | Cite as

Deformation of singular lagrangian subvarieties



We investigate deformations of lagrangian manifolds with singularities. We introduce a complex similar to the de Rham-complex whose cohomology calculates deformation spaces. This cohomology turns out to be constructible in many cases. Examples of singular lagrangian varieties are presented and deformations are calculated explicitly.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banyaga, A.: An introduction to symplectic geometry, Progress in Mathematics, vol 117, Birkhaeuser, 1994, pp. 17–40Google Scholar
  2. 2.
    Björk J.-E.: Analytic D-modules and applications, Mathematics and its applications, vol. 247, Kluwer Academic Publishers, 1993Google Scholar
  3. 3.
    Castro-Jiménez F.J., Narváez-Macarro L., Mond D.: Cohomology of the complement of a free divisor, Trans. Am. Math. Soc. 348, 3037–3049 (1996)CrossRefGoogle Scholar
  4. 4.
    Givental’, A.B.: Varieties of polynomials having a root of fixed comultiplicity and the generalized Newton equation. Funct. Anal. Appl. 16, 10–14 (1982)CrossRefMATHGoogle Scholar
  5. 5.
    Givental,’ A.B.: Lagrangian manifolds with singularities and irreducible sl 2-modules. Russ. Math. Surv. 38(6), 121–122 (1983)CrossRefGoogle Scholar
  6. 6.
    Givental’, A.B.: Singular Lagrangian manifolds and their Lagrangian mappings, Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Novejshie Dostizh. 33, 55–112 (1988); English translation: J. Soviet Math. 52(4), 3246–3278 (1990)MATHMathSciNetGoogle Scholar
  7. 7.
    Grayson D.R., Stillman M.E.: Macaulay 2, a software system for research in algebraic geometry, Available at Scholar
  8. 8.
    Hertling C.: Multiplication on the tangent bundle. Preprint alg-geom/9910116Google Scholar
  9. 9.
    Källström, R.: Smooth modules over Lie algebroids I. Preprint, 1998, alg-geom/9808108Google Scholar
  10. 10.
    Mackenzie, K.: Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note, vol. 124, Cambridge University Press, 1987Google Scholar
  11. 11.
    Malgrange, B.: Intégrales asymptotiques et monodromie. Ann. Sci. Ec. Norm. Super. IV. Ser. 7, 405–430 (1974)MATHMathSciNetGoogle Scholar
  12. 12.
    Matsushita, D.: Equidimensionality of complex lagrangian fibrations. Preprint alg-geom/9911166Google Scholar
  13. 13.
    Matsumura H.: Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, 1989Google Scholar
  14. 14.
    Schlessinger, M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Sevenheck, C.: Lagrange-Singularitäten und ihre Deformationen. Diploma thesis, Heinrich-Heine-Universität Düsseldorf, 1999Google Scholar
  16. 16.
    van Straten, D.: On the Betti numbers of the Milnor fibre of a certain class of hypersurface singularities, Singularities, representation of algebras, and vector bundles (Gert-Martin Greuel and Günter Trautmann, ed.), Lect. Notes Math., vol. 1273, Springer-verlag, 1987, pp. 203–220Google Scholar
  17. 17.
    Weinstein A.: Connections of Berry and Hannay type for moving Lagrangian submanifolds. (English) Adv. Math. 82, 133–159 (1990)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.FB MathematikJohannes-Gutenberg-Universität MainzMainzGermany

Personalised recommendations