Archive for Rational Mechanics and Analysis

, Volume 162, Issue 2, pp 101–135 | Cite as

A Model for the Quasi-Static Growth¶of Brittle Fractures:¶Existence and Approximation Results

  • Gianni Dal Maso
  • Rodica Toader
Article

Abstract

We give a precise mathematical formulation of a variational model for the irreversible quasi-static evolution of brittle fractures proposed by G. A. Francfort and J.-J. Marigo, and based on Griffith's theory of crack growth. In the two-dimensional case we prove an existence result for the quasi-static evolution and show that the total energy is an absolutely continuous function of time, although we cannot exclude the possibility that the bulk energy and the surface energy may present some jump discontinuities. This existence result is proved by a time-discretization process, where at each step a global energy minimization is performed, with the constraint that the new crack contains all cracks formed at the previous time steps. This procedure provides an effective way to approximate the continuous time evolution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Gianni Dal Maso
    • 1
  • Rodica Toader
    • 1
  1. 1.SISSA¶Via Beirut 2–4¶34014 Trieste, Italy¶e-mail: dalmaso@sissa.it¶e-mail: toader@sissa.itIT

Personalised recommendations