Advertisement

Archive for Rational Mechanics and Analysis

, Volume 139, Issue 4, pp 303–354 | Cite as

Discontinuous Solutions of the Navier-Stokes Equations for Multidimensional Flows of Heat-Conducting Fluids

  • David Hoff
Article

Abstract

We prove the global existence of weak solutions of the Navier-Stokes equations for compressible, heat-conducting fluids in two and three space dimensions when the initial density is close to a constant in L 2L , the initial temperature is close to a constant in L 2, and the initial velocity is small in H s L 4, where s=0 when n=2 and \(\) when n=3. (The L p norms must be weighted slightly when n=2.) In particular, the initial data may be discontinuous across a hypersurface of \(\) n . A great deal of qualitative information about the solution is obtained. For example, we show that the velocity, vorticity, and temperature are relatively smooth in positive time, as is the “effective viscous flux”F, which is the divergence of the velocity minus a certain multiple of the pressure. We find that F plays a central role in the entire analysis, particularly in closing the required energy estimates and in understanding rates of regularization near the initial layer. Moreover, F is precisely the quantity through which the hyperbolicity of the corresponding equations for inviscid fluids shows itself, an effect which is crucial for obtaining time-independent pointwise bounds for the density.

Keywords

Vorticity Weak Solution Space Dimension Global Existence Initial Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • David Hoff
    • 1
  1. 1.Department of Mathematics Indiana University Bloomington, Indiana 47405-5701IN

Personalised recommendations