Advertisement

Local Well-Posedness for the Motion of a Compressible, Self-Gravitating Liquid with Free Surface Boundary

  • Daniel GinsbergEmail author
  • Hans Lindblad
  • Chenyun Luo
Article
  • 44 Downloads

Abstract

We establish the local well-posedness for the free boundary problem for the compressible Euler equations describing the motion of liquid under the influence of Newtonian self-gravity. We do this by solving a tangentially-smoothed version of Euler’s equations in Lagrangian coordinates which satisfies uniform energy estimates as the smoothing parameter goes to zero. The main technical tools are delicate energy estimates and optimal elliptic estimates in terms of boundary regularity, for the Dirichlet problem and Green’s function.

Notes

Acknowledgements

The authors would like to thank Jeffrey Marino and Junyan Zhang for reading the first draft of our paper.

References

  1. 1.
    Adams , R.A.: Sobolev Spaces, 2nd edn. Academic Press, London 1975zbMATHGoogle Scholar
  2. 2.
    Cheng , C.H.A., Shkoller , S.: Solvability and regularity for an elliptic system prescribing the curl, divergence, and partial trace of a vector field on sobolev-class domains. J. Math. Fluid Mech. 19(3), 375–422, 2016MathSciNetCrossRefGoogle Scholar
  3. 3.
    Christodoulou , D., Lindblad , H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602, 2000MathSciNetCrossRefGoogle Scholar
  4. 4.
    Coutand , D., Shkoller , S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(307), 829–930, 2007MathSciNetCrossRefGoogle Scholar
  5. 5.
    Coutand , D., Shkoller , S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206(2), 515–616, 2012MathSciNetCrossRefGoogle Scholar
  6. 6.
    Coutand , D., Hole , J., Shkoller , S.: Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit. SIAM J. Math. Anal. 45(6), 3690–3767, 2013MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coutand , D., Lindblad , H., Shkoller , S., Coutand , Daniel, Lindblad , Hans, Shkoller , Steve: A priori estimates for the free-boundary 3D compressible Euler equations in physical vacuum. Commun. Math. Phys. 296(2), 559–587, 2010ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ebin , D.G.: The equations of motion of a perfect fluid with free boundary are not well posed. Commun. Partial Differ. Equ. 12(10), 1175–1201, 1987MathSciNetCrossRefGoogle Scholar
  9. 9.
    Evans , L.C.: Partial Differential Equations. American Mathematical Society, Providence 2010zbMATHGoogle Scholar
  10. 10.
    Hörmander , L.: The Analysis of Linear Partial Differential Operators III. Springer, New York 2007CrossRefGoogle Scholar
  11. 11.
    Jang , J.: Local well-posedness of dynamics of viscous gaseous stars. Arch. Ration. Mech. Anal. 195(3), 797–863, 2010MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jang , J., Hadzic , M.: A class of global solutions to the Euler–Poisson system. Commun. Math. Phys. 370(2), 475–505, 2019ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Jang , J., Li , D., Zhang , X.: Smooth global solutions for the two-dimensional Euler Poisson system. Forum Mathematicum26(3), 645–701, 2014MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jang , J., Masmoudi , N.: Well-posedness for compressible Euler equations with physical vacuum singularity. Commun. Pure Appl. Math. 62(10), 1327–1385, 2009MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jang , J., Masmoudi , N.: Well-posedness of compressible Euler equations in a physical vacuum. Commun. Pure Appl. Math. 68(1), 61–111, 2015MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lindblad , H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162(1), 109–194, 2005MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lindblad , H.: Well posedness for the motion of a compressible liquid with free surface boundary. Commun. Math. Phys. 260(2), 319–392, 2005ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Lindblad, H., Luo, C.: A priori Estimates for the Compressible Euler Equations for a Liquid with Free Surface Boundary and the Incompressible Limit, pp. 1–50 (2016)Google Scholar
  19. 19.
    Lindblad , H., Nordgren , K.: A priori estimates for the motion of a self-gravitating incompressible liquid with free surface boundary. J. Hyperbolic Differ. Equ. 06(02), 1–20, 2008zbMATHGoogle Scholar
  20. 20.
    Luo , T., Xin , Z., Zeng , H.: Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation. Arch. Ration. Mech. Anal. 213(3), 763–831, 2014MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nordgren, K.H.: Well-posedness for the equations of motion of an inviscid, incompressible, self-gravitating fluid with free boundary. PhD thesis (2008)Google Scholar
  22. 22.
    Taylor, M.E.: Partial Differential Equations I, vol 1 (2011)Google Scholar
  23. 23.
    Stein, E.: Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)Google Scholar
  24. 24.
    Wu , S.: Well-posedness in Sobolev spaces of the full water wave problem in \(3\)-D. J. Am. Math. Soc. 12, 445–495, 1999MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations