Advertisement

Exact Two-Dimensional Multi-Hump Waves on Water of Finite Depth with Small Surface Tension

  • Shengfu DengEmail author
  • Shu-Ming Sun
Article
  • 61 Downloads

Abstract

This paper concerns the existence of multi-hump traveling waves propagating on the free surface of a two-dimensional water channel under the influence of gravity and small surface tension force. The fluid of constant density is assumed to be inviscid and incompressible and the flow is irrotational. It was known that the exact governing equations, called Euler equations, possess a generalized solitary-wave solution of elevation that consists of a single crest (or hump) at the center and a much smaller oscillation at infinity. This paper provides the first proof of the existence of multi-hump waves using the Euler equations. It is shown that when the wave speed is near its critical value and the surface tension is small, the Euler equations have a two-hump solution which consists of two crests, that are spaced far apart, and a smaller oscillation at infinity. Moreover, the ideas and methods may be used to study \(2^m\)-hump solutions.

Notes

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions. Deng is partially supported by the National Natural Science Foundation of China (Nos. 11371314, 11771197), the Natural Science Foundation of Fujian Province of China (No. 2019J01064), the Guangdong Natural Science Foundation of China (No. 2017A030313030), and the Scientific Research Funds of Huaqiao University. Sun is partially supported by U.S. National Science Foundation (No. DMS-1210979).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Amick, C.J., Kirchgässner, K.: A theory of solitary water-waves in the presence of surface tension. Arch. Ration. Mech. Anal. 105, 1–49, 1989MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beale, J.T.: The existence of solitary water waves. Commun. Pure Appl. Math. 30, 373–389, 1977MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beale, J.T.: Exact solitary water waves with capillary ripples at infinity. Commun. Pure Appl. Math. 44, 211–257, 1991MathSciNetCrossRefGoogle Scholar
  4. 4.
    Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55–108, 1872MathSciNetzbMATHGoogle Scholar
  5. 5.
    Boussinesq, J.: Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants á l’Académie des Sciences Inst. France (séries 2)23, 1–680, 1877zbMATHGoogle Scholar
  6. 6.
    Buffoni, B., Groves, M.D.: A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory. Arch. Ration. Mech. Anal. 146, 183–220, 1999MathSciNetCrossRefGoogle Scholar
  7. 7.
    Buffoni, B., Groves, M.D., Toland, J.F.: A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers. Philos. Trans. R. Soc. Lond. Ser. A354, 575–607, 1996Google Scholar
  8. 8.
    Choi, J.W., Lee, D.S., Oh, S.H., Sun, S.M., Whang, S.I.: Multi-hump solutions of some singularly-perturbed equations of KdV type. Discrete Contin. Dyn. Syst. 34, 5181–5209, 2014MathSciNetCrossRefGoogle Scholar
  9. 9.
    Choi, J.W., Lee, D.S., Oh, S.H., Sun, S.M., Whang, S.I.: Mathematical, numerical and experimental study of solitary waves. In: Ei, S.-I., Kawashima, S., Kimura, M., Mizumachi, T. (eds.) Nonlinear Dynamics in Partial Differential Equations. Advanced Studies in Pure Mathematics, vol. 64, pp. 263–271. Mathematical Society of Japan, Tokyo 2015CrossRefGoogle Scholar
  10. 10.
    Clamond, D., Dutykh, D., Durán, D.: A plethora of generalised solitary gravity-capillary water waves. J. Fluid Mech. 784, 664–680, 2015ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Craig, W., Sternberg, P.: Symmetry of solitary waves. Commun. Partial Differ. Equ. 13, 603–633, 1988MathSciNetCrossRefGoogle Scholar
  12. 12.
    Deng, S., Sun, S.M.: Multi-hump solutions with small oscillations at infinity for stationary Swift-Hohenberg equation. Nonlinearity30, 765–809, 2017ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Dias, F., Iooss, G.: Capillary-gravity solitary waves with damped oscillations. Physica D65, 399–423, 1993ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Fischer, G.: Zentrumsmannigfaltigkeiten bei elliptischen Differentialgleichungen. (German) [Center manifolds for elliptic differential equations]. Math. Nachr. 115, 137–157, 1984MathSciNetCrossRefGoogle Scholar
  15. 15.
    Friedrichs, K.O., Hyers, D.: The existence of solitary waves. Commun. Pure Appl. Math. 7, 517–550, 1954MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095–1097, 1967ADSCrossRefGoogle Scholar
  17. 17.
    Groves, M.D., Mielke, A.: A spatial dynamics approach to three-dimensional gravity-capillary steady water waves. Proc. R. Soc. Edinb. Sect. A131, 83–136, 2001MathSciNetCrossRefGoogle Scholar
  18. 18.
    Groves, M.D., Wahlen, E.: Spatial dynamics methods for solitary gravity-capillary water waves with an arbitrary distribution of vorticity. SIAM J. Math. Anal. 39, 932–964, 2007MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hunter, J.K., Vanden-Broeck, J.-M.: Solitary and periodic gravity-apillary waves of finite amplitude. J. Fluid Mech. 134, 205–219, 1983ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Iooss, G., Adelmeyer, M.: Topics in Bifurcation Theory and Applications. Advanced Series in Nonlinear Dynamics. World Scientific Publishing Co., Inc., Singapore 1992CrossRefGoogle Scholar
  21. 21.
    Iooss, G., Kirchgässner, K.: Bifurcation d’ondes solitaires en présence d’une faible tension superficielle. C. R. Acad. Sci. Paris Sér. I Math. 311, 265–268, 1990MathSciNetzbMATHGoogle Scholar
  22. 22.
    Iooss, G., Kirchgässner, K.: Water waves for small surface tension: an approach via normal form. Proc. R. Soc. Edinb. 122A, 267–299, 1992MathSciNetCrossRefGoogle Scholar
  23. 23.
    Iooss, G., Pérouéme, M.-C.: Perturbed homoclinic solutions in reversible 1:1 resonance vector fields. J. Differ. Equ. 102, 62–88, 1993ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. (Ser. 5)39, 422–443, 1895Google Scholar
  25. 25.
    Lavrentév, M.A.: On the theory of long waves (1943); a contribution to the theory of long waves (1947). Am. Math. Soc. Transl. 102, 3–50, 1954Google Scholar
  26. 26.
    Lombardi, E.: Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves. Arch. Ration. Mech. Anal. 137, 227–304, 1997MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lu, N., Zeng, C.: Normally elliptic singular perturbations and persistence of homoclinic orbits. J. Differ. Equ. 250, 4124–4176, 2011ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Mielke, A.: Reduction of quasilinear elliptic equations in cylindrical domains with applications. Math. Methods Appl. Sci. 10, 51–66, 1988ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Rayleigh, L.: On waves. Philos. Mag. (Ser. 5)1, 257–279, 1876Google Scholar
  30. 30.
    Russell, J.S.: Report on waves. Report of the 14th Meeting of the British Association for the Advancement of Science. John Murray, London, pp. 311–390, 1844Google Scholar
  31. 31.
    Sachs, R.L.: On the existence of small amplitude solitary waves with strong surface tension. J. Differ. Equ. 90, 31–51, 1991ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Shatah, J., Zeng, C.: Orbits homoclinic to centre manifolds of conservative PDEs. Nonlinearity16, 591–614, 2003ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Stoker, J.J.: Water Waves: The Mathematical Theory with Applications. Interscience, New York 1957zbMATHGoogle Scholar
  34. 34.
    Sun, S.M.: Existence of a generalized solitary wave solution for water waves with positive bond number less than 1/3. J. Math. Anal. Appl. 156, 471–504, 1991MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sun, S.M.: Non-existence of truly solitary waves in water with small surface tension. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455, 2191–2228, 1999ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Sun, S.M.: Existence theory of capillary-gravity waves on water of finite depth. Math. Control Relat. Fields4, 315–363, 2014MathSciNetCrossRefGoogle Scholar
  37. 37.
    Sun, S.M., Shen, M.C.: Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave. J. Math. Anal. Appl. 172, 533–566, 1993MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zelati, V.C., Macrí, M.: Multibump solutions homoclinic to periodic orbits of large energy in a centre manifold. Nonlinearity18, 2409–2445, 2005ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesHuaqiao UniversityQuanzhouChina
  2. 2.Department of MathematicsLingnan Normal UniversityZhanjiangChina
  3. 3.Department of MathematicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations