Splash Singularities for a General Oldroyd Model with Finite Weissenberg Number

  • Elena Di Iorio
  • Pierangelo MarcatiEmail author
  • Stefano Spirito


In this paper we study a 2D free-boundary Oldroyd-B model which describes the evolution of a viscoelastic fluid. We prove the existence of splash singularities, namely points where the free-boundary remains smooth but self-intersects. This paper extends the previous results obtained for the infinite Weissenberg number by the authors in Di Iorio et al. (Splash singularity for a free boundary incompressible viscoelastic fluid model, 2018. arXiv:1806.11089; Splash singularity for a 2D Oldroyd-B model with nonlinear Piola-Kirchhoff stress, Nonlinear Differ Equ Appl 24:60, 2017) to the more realistic physical case of any finite Weissenberg number. The main difficulty faced in this paper is due to the non-linear balance law of the elastic tensor, which cannot be reduced, as in the case of infinite Weissenberg, to a transport equation for the deformation gradient. Overcoming this difficulty requires a very accurate local existence theorem in terms of dependence on the Weissenberg number. The method in this case is based on the combined use of conformal transformations and lagrangian coordinates, whose formulation must however take into account the general balance law of the elastic tensor and its dependence on the Weissenberg number. The existence of the splash singularities is therefore guaranteed by an adequate choice of initial data, depending also on the elastic tensor, combined with stability estimates.



The authors would like to thank Ángel Castro and Diego Córdoba for the helpful convertions and the anonymous referee for their comments and suggestions.


  1. 1.
    Beale, J.T.: The initial value problem for the Navier–Stokes equations with a free surface. Commun. Pure Appl. Math. 34(3), 359–392, 1981MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baranger, J., Guillopé, C., Saut, J.C.: Mathematical analysis of differential models for viscoelastic fluids. In: Piau, J.M., Agassant, J.F. (eds.) Rheology for Polymer Melt Processing, pp. 199–236. Elsevier Science, Amsterdam 1996CrossRefGoogle Scholar
  3. 3.
    Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Finite time singularities for the free boundary incompressible Euler equations. Ann. Math. (2) 178(3), 1061–1134, 2013MathSciNetCrossRefGoogle Scholar
  4. 4.
    Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Splash singularities for the free boundary Navier–Stokes equations. Ann. PDE 5, 12, 2019. MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Castro, A., Córdoba, D., Fefferman, C., Gancedo, F., Gómez-Serrano, J.: Splash singularities for water waves. Proc. Natl. Acad. Sci. 109(3), 733–738, 2012ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Córdoba, A., Córdoba, D., Gancedo, F.: Interface evolution: water waves in 2-D. Adv. Math. 223(1), 120–173, 2010MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coutand, D., Shkoller, S.: On the finite-time splash and splat singularities for the 3-D free-surface euler equations. Commun. Math. Phys. 325, 143–183, 2014ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Coutand, D., Shkoller, S.: On the splash singularity for the free-surface of a Navier-Stokes fluid. Ann. Inst. Poincaré. 36(2), 475–503, 2019MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, Y., Zheng, P.: The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions. Commun. Partial Differ. Equ. 31, 1793–1810, 2006MathSciNetCrossRefGoogle Scholar
  10. 10.
    Di Iorio, E., Marcati, P., Spirito, S.: Splash singularity for a free boundary incompressible viscoelastic fluid model. In: Klingenberg, C., Westdickenberg, M. (eds.) Theory, Numerics and Applications of Hyperbolic Problems I. HYP 2016, pp. 501–513. Springer, Cham 2018CrossRefGoogle Scholar
  11. 11.
    Di Iorio, E., Marcati, P., Spirito, S.: Splash singularity for a free boundary incompressible viscoelastic fluid model (2018). Preprint arXiv:1806.11089
  12. 12.
    Di Iorio, E., Marcati, P., Spirito, S.: Splash singularities for a 2D Oldroyd-B model with nonlinear Piola–Kirchhoff stress. Nonlinear Differ. Equ. Appl. 24, 60, 2017MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fernández-Cara, E., Guillen, F., Ortega, R.R.: Mathematical modeling and Analysis of viscoelastic fluids of the Oldroyd kind. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis VIII, pp. 543–661. Elsevier Science, Amsterdam 2002zbMATHGoogle Scholar
  14. 14.
    Guillopé, C., Saut, J.C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15(9), 849–869, 1990MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, Cambridge 1981zbMATHGoogle Scholar
  16. 16.
    Keunings, R.: On the high Weissenberg number problem. J. Non-Newton. Fluid Mech. 20, 209–226, 1986CrossRefGoogle Scholar
  17. 17.
    Le Meur, H.V.J.: Well-posedness of surface wave equations above a viscoelastic fluid. J. Math. Fluid Mech. 13, 481–514, 2011MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lei, Z., Liu, C., Zhou, Y.: Global solutions for incompressible viscoelastic fluids. Arch. Rational Mech. Anal. 188, 371–398, 2008ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Lin, F., Liu, C., Zhang, P.: On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58, 1437–1471, 2005MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications. Springer, New York 1972CrossRefGoogle Scholar
  21. 21.
    Lions, P.L., Masmoudi, N.: Global solutions for some Oldroyd models of Non-Newtonian flows. Chin. Ann. Math. Ser. B. 21(2), 131–146, 2000MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lin, F., Zhang, P.: On the initial-boundary value problem of the incompressible viscoelastic fluid system. Commun. Pure Appl. Math. 61, 539–558, 2008MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu, C., Walkington, N.J.: An eulerian description of fluids containing visco-elastic particles. Arch. Rational Mech. Anal. 159, 229–252, 2001ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Oldroyd, J.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A. 200, 523–541, 1950ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Owens, R.G., Phillips, T.N.: Computational Rheology. Imperial College Press, London 2002CrossRefGoogle Scholar
  26. 26.
    Renardy, M.: Mathematical Analysis of Viscoelastic Flows. Society for Industrial and Applied Mathematics (SIAM), Philadelphia 2000CrossRefGoogle Scholar
  27. 27.
    Thomases, B., Shelley, M.: Emergence of singular structures in Oldroyd-B fluids. Phys. Fluid. 19(10), 103103, 2007ADSCrossRefGoogle Scholar
  28. 28.
    Xu, L., Zhang, P., Zhang, Z.: Global solvability of a free boundary three-dimensional incompressible viscoelastic fluid system with surface tension. Arch. Rational Mech. Anal. 208, 753–803, 2013ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GSSI - Gran Sasso Science InstituteL’AquilaItaly
  2. 2.Instituto de Ciencias MatemáticasConsejo Superior de Investigaciones CientíficasMadridSpain
  3. 3.Department of Information Engineering, Computer Science and MathematicsUniversity of L’AquilaL’AquilaItaly

Personalised recommendations