Plasticity as the \({\Gamma}\)-Limit of a Two-dimensional Dislocation Energy: The Critical Regime Without the Assumption of Well-Separateness

  • Janusz GinsterEmail author


In this paper, a strain-gradient plasticity model is derived from a mesoscopic model for straight parallel edge dislocations in an infinite cylindrical crystal. The main difference to existing work is that in this work the well-separateness of dislocations is not assumed. In order to prove meaningful lower bounds, the ball construction technique, which was developed in the context of Ginzburg–Landau by Jerrard and Sandier, is adapted and modified. To overcome the difficulty of loss of rigidity on thin annuli during the ball construction a combination of combinatorial arguments and local modifications of the occurring elastic strains is presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is very grateful to Stefan Müller and Sergio Conti for bringing the problem to his attention and for many fruitful discussions.


  1. 1.
    Alicandro, R., De Luca, L., Garroni, A., Ponsiglione, M.: Metastability and dynamics of discrete topological singularities in two dimensions: a \(\Gamma\)-convergence approach. Arch. Ration. Mech. Anal. 214(1), 269–330 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cermelli, P., Leoni, G.: Renormalized energy and forces on dislocations. SIAM J. Math. Anal. 37(4), 1131–1160 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Conti, S., Garroni, A., Müller, S.: Singular kernels, multiscale decomposition of microstructure, and dislocation models. Arch. Ration. Mech. Anal. 199(3), 779–819 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Conti, S., Garroni, A., Ortiz, M.: The line-tension approximation as the dilute limit of linear-elastic dislocations. Arch. Ration. Mech. Anal. 218(2), 699–755 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3. Springer, Berlin (1988)CrossRefzbMATHGoogle Scholar
  6. 6.
    De Luca, L., Garroni, A., Ponsiglione, M.: \(\Gamma\)-convergence analysis of systems of edge dislocations: the self energy regime. Arch. Ration. Mech. Anal. 206(3), 885–910 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fanzon, S., Palombaro, M., Ponsiglione, M.: Derivation of linearised polycrystals from a 2d system of edge dislocations. arXiv:1805.04484
  8. 8.
    Fleck, N., Hutchinson, J.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825–1857 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55(11), 1461–1506 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Garroni, A., Leoni, G., Ponsiglione, M.: Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. 12(5), 1231–1266 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ginster, J.: Strain-gradient plasticity as the \(\Gamma\)-limit of nonlinear dislocation energy with mixed growth, submittedGoogle Scholar
  12. 12.
    Groma, I.: Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations. Phys. Rev. B 56, 5807–5813 (1997). ADSCrossRefGoogle Scholar
  13. 13.
    Gurtin, M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50(1), 5–32 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jerrard, R.L.: Lower bounds for generalized Ginzburg-Landau functionals. J. Math. Anal. 30(4), 721–746 (1999)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lauteri, G., Luckhaus, S.: An energy estimate for dislocation configurations and the emergence of cosserat-type structures in metal plasticity. arXiv:1608.06155
  16. 16.
    Müller, S., Scardia, L., Zeppieri, C.I.: Geometric rigidity for incompatible fields and an application to strain-gradient plasticity. Indiana Univ. Math. J. 63(5), 1365–1396 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nye, J.: Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953)CrossRefGoogle Scholar
  18. 18.
    Orowan, E.: Zur Kristallplastizität. III. Zeitschrift für Physik 89(9), 634–659 (1934). ADSCrossRefGoogle Scholar
  19. 19.
    Payne, L., Weinberger, H.: On Korn's inequality. Arch. Ration. Mech. Anal. 8(1), 89–98 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Polanyi, M.: Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Z. Phys. 89(9–10), 660–664 (1934)ADSCrossRefGoogle Scholar
  21. 21.
    Ponsiglione, M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39(2), 449–469 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sandier, E.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379–403 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Scardia, L., Zeppieri, C.I.: Line-tension model for plasticity as the \(\Gamma\)-limit of a nonlinear dislocation energy. SIAM J. Math. Anal. 44(2), 2372–2400 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Taylor, G.I.: The mechanism of plastic deformation of crystals. part I. theoretical. Proc. R. Soc. Lond. Ser. A 145(855), 362–387, 1934Google Scholar
  25. 25.
    Volterra, V.: Sur l'équilibre des corps élastiques multiplement connexes. Ann. Sci. École Norm. Sup. 24(3), 401–517 (1907)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Nonlinear AnalysisCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations