Advertisement

Global Strong Solutions of the Vlasov–Poisson–Boltzmann System in Bounded Domains

  • Yunbai Cao
  • Chanwoo KimEmail author
  • Donghyun Lee
Article
  • 39 Downloads

Abstract

When dilute charged particles are confined in a bounded domain, boundary effects are crucial in the global dynamics. We construct a unique global-in-time solution to the Vlasov–Poisson–Boltzmann system in convex domains with the diffuse boundary condition. The construction is based on an L2-L framework with a novel nonlinear-normed energy estimate of a distribution function in some weighted W1,p-spaces and C2,δ-estimates of the self-consistent electric potential. Moreover we prove an exponential convergence of the distribution function toward the global Maxwellian.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Hongxu Chen for finding errors in the original manuscript and fixing them. They also thank the referee(s) for useful comments which helped us to improve the clarity of presentation. The authors thank Yan Guo for his interest and discussions. They also thank Clément Mouhot, Lello Esposito, Rossana Marra, Misha Feldman, Hyung Ju Hwang, and Stéphane Mischler for their interest in this project. C.K. especially thanks James Callen (Center for Plasma Theory and Computation) for discussions on the several relevant kinetic models. The authors also thank the kind hospitality ofMFO at Oberwolfach, ICERM, KAIST-CMC,math/applied math departments of Brown, Cambridge, Princeton, USC (during a summer school organized by Juhi Jang), UMN, UIC, UT-Austin, POSTECH, NTU, Lyon 1, and Paris-Dauphine during this research.

References

  1. 1.
    Arsenio, D., Saint-Raymond, L.: From the Vlasov–Maxwell–Boltzmann system to incompressible viscous electro-magneto-hydrodynamics. arXiv:1604.01547
  2. 2.
    Cao, Y.: Regularity of Boltzmann equation with external fields in convex domains of diffuse reflection. submitted, arXiv:1812.09388
  3. 3.
    Cao, Y.: A note on two species collisional plasma in bounded domains, arXiv:1903.04935
  4. 4.
    Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences, 106. Springer, New York, 1994Google Scholar
  5. 5.
    Chen, H., Kim, C., Li, Q.: Local Well-Posedness of Vlasov–Possion–Boltzmann System with Generalized Diffuse Boundary Condition, preprintGoogle Scholar
  6. 6.
    Desvillettes, L., Dolbeault, J.: On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Commun. Partial Differ. Equ. 16(2–3), 451–489 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    DiPerna, R.J., Lions, P.L.: On the Cauchy problem for Boltzmann equation: global existence and weak stability. Ann. Math. 130, 321–366 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Devillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Esposito, R., Guo, Y., Kim, C., Marra, R.: Stationary solutions to the Boltzmann equation in the Hydrodynamic limit. Ann. PDE 4(1), Art. 1, pp. 119, 2018Google Scholar
  10. 10.
    Esposito, R., Guo, Y., Kim, C., Marra, R.: Non-Isothermal Boundary in the Boltzmann Theory and Fourier Law. Commun. Math. Phys. 323(1), 177–239 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order, Reprint of the, 1998th edn. Classics in Mathematics, Springer, Berlin (2001)zbMATHGoogle Scholar
  12. 12.
    Glassey, R., Strauss, W.: Decay of the linearized Boltzmann–Vlasov system. Transp. Theor. Stat. 28(2), 35–156 (1999)Google Scholar
  13. 13.
    Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization for non-symmetric operators and exponential H-theorem. Mem. Soc. Math. Fr. (N.S.) No. 153, pp. 137, 2017Google Scholar
  14. 14.
    Guo, Y.: The Vlasov-Poisson-Boltzmann system near Maxwellians. Commun. Pure Appl. Math. 55(9), 1104–1135 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Guo, Y.: The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630 (September 2003)Google Scholar
  16. 16.
    Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann equation in convex domains. Invent. Math. 207(1), 115–290 (January 2017)Google Scholar
  17. 17.
    Guo, Y., Kim, C., Tonon, D., Trescases, A.: BV-regularity of the Boltzmann equation in non-convex domains. Arch. Ration. Mech. Anal. 220(3), 1045–1093 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Guo, Y.: Decay and Continuity of Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197(3), 713–809 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Guo, Y., Jang, J.: Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 299(2), 469–501 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Guo, Y.: Regularity of the Vlasov equations in a half space. Indiana. Math. J. 43, 255–320 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Glassey, R.: The Cauchy Problems in Kinetic Theory. SIAM, Philadelphia (1996)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hwang, H.-J., Velazquez, J.: Global existence for the Vlasov-Poisson system in bounded domains. Arch. Rat. Mech. Anal. 195(3), 763–796 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jang, J., Masmoudi, N.: Derivation of Ohm's law from the kinetic equations. SIAM J. Math. Anal. 44(5), 3649–3669 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kim, C.: Formation and propagation of discontinuity for Boltzmann equation in non-convex domains. Commun. Math. Phys. 308(3), 641–701 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kim, C.: Boltzmann equation with a large external field. Comm. PDE. 39(8), 1393–1423 (2014)CrossRefzbMATHGoogle Scholar
  26. 26.
    Kim, C., Lee, D.: The Boltzmann equation with specular boundary condition in convex domains. Comm. Pure Appl. Math. 71(3), 411–504 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kim, C., Lee, D.: Decay of the Boltzmann equation with the specular boundary condition in non-convex cylindrical domains. Arch. Ration. Mech. Anal. 230(1), 49–123 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kim, C., Lee, D.: Hölder Regularity Propagation for the Boltzmann equation Past an Obstacle, in preparationGoogle Scholar
  29. 29.
    Kim, C., Yun, S.: The boltzmann equation near a rotational local maxwellian. SIAM J. Math. Anal. 44(4), 2560–2598 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  31. 31.
    Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1866)Google Scholar
  32. 32.
    Mischler, S.: On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 210, 447–466 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  34. 34.
    Strain, R.: Asymptotic stability of the relativistic Boltzmann equation for the soft potentials. Commun. Math. Phys. 300(2), 529–597 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations