Advertisement

Imperfect Bifurcation for the Quasi-Geostrophic Shallow-Water Equations

  • David Gerard Dritschel
  • Taoufik Hmidi
  • Coralie Renault
Article
  • 25 Downloads

Abstract

We study analytical and numerical aspects of the bifurcation diagram of simply connected rotating vortex patch equilibria for the quasi-geostrophic shallow-water (QGSW) equations. The QGSW equations are a generalisation of the Euler equations and contain an additional parameter, the Rossby deformation length \({\varepsilon^{-1}}\), which enters into the relation between the stream function and (potential) vorticity. The Euler equations are recovered in the limit \({\varepsilon \rightarrow 0}\). We prove, close to circular (Rankine) vortices, the persistence of the bifurcation diagram for arbitrary Rossby deformation length. However we show that the two-fold branch, corresponding to Kirchhoff ellipses for the Euler equations, is never connected even for small values \({\varepsilon}\), and indeed is split into a countable set of disjoint connected branches. Accurate numerical calculations of the global structure of the bifurcation diagram and of the limiting equilibrium states are also presented to complement the mathematical analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

DGD received support for this research from the UK Engineering and Physical Sciences Research Council (grant number EP/H001794/1). TH is partially supported by the the ANR project Dyficolti ANR-13-BS01-0003- 01.

References

  1. 1.
    Burbea J.: Motions of vortex patches. Lett. Math. Phys. 6(1), 1–16 (1982)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Castro A., Córdoba D., Gomez-Serrano J.: Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations. Duke Math. J. 165(5), 935–984 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Castro, A., Córdoba, D., Gomez-Serrano, J.: Uniformly rotating analytic global patch solutions for active scalars. Ann. PDE 2(1), Art. 1, 34 2016Google Scholar
  4. 4.
    Cerretelli C., WilliamsonC. H. K.: A new family of uniform vortices related to vortex configurations before merging. J. Fluid Mech. 493, 219–229 (2003)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J.Funct. Analysis 8, 321–340 (1971)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Deem G.S., Zabusky N.J.: Vortex waves: stationary "V-states", interactions, recurrence, and breaking. Phys. Rev. Lett. 40(13), 859–862 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    Dritschel D.G.: The nonlinear evolution of rotating configurations of uniform vorticity. J. Fluid Mech. 172, 157–172 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    Dritschel D.G.: Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics. J. Comput. Phys. 77, 240–266 (1988)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dritschel D.G.: Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows. Computer Phys. Rep. 10, 77–146 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    Dritschel D.G.: A general theory for two-dimensional vortex interactions. J. Fluid Mech. 293, 269–303 (1995)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Golubitsky M., Schaeffer D.: A theory for imperfect bifurcation via singularity theory. Commun. Pure Appl. Math. 32(1), 21–98 (1979)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hassainia Z., Hmidi T.: On the V-states for the generalized quasi-geostrophic equations. Commun. Math. Phys. 337(1), 321–377 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hassainia, Z., Masmoudi, N.,Wheeler, M. H.: Global bifurcation of rotating vortex patches, arXiv:1712.03085
  14. 14.
    Hmidi T., Mateu J., Verdera J.: Boundary regularity of rotating vortex patches. Arch. Ration. Mech. Anal. 209(1), 171–208 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hmidi T., Mateu J.: Bifurcation of rotating patches from Kirchhoff vortices. Discrete Contin. Dyn. Syst. 36(10), 5401–5422 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kamm, J. R.: Shape and stability of two-dimensional uniform vorticity regions. Ph.D. thesis, California Institute of Technology, 1987Google Scholar
  17. 17.
    Kirchhoff G.R.: Vorlesungenb̈er mathematische Physik.Mechanik. Teubner, Leipzig (1876)Google Scholar
  18. 18.
    Liu P., Shi J., Wang Y.: Imperfect transcritical and pitchfork bifurcations. J. Funct. Anal. 251(2), 573–600 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Love A.E.H.: On the stability of certain vortex motions. Proc. Lond. Math. Soc. 35, 18 (1893)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Luzzatto-Fegiz P., Williamson C.H.K.: Stability of elliptical vortices from “Imperfect–Velocity–Impulse” diagrams. Theor. Comput. Fluid Dyn. 24(1-4), 181–188 (2010)CrossRefGoogle Scholar
  21. 21.
    Luzzatto-Fegiz P., Williamson C.H.K.: An efficient and general numerical method to compute steady uniform vortices. J. Comput. Phys. 230, 6495–6511 (2011)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Overman E.A. II: Steady-state solutions of the Euler Equations in two dimensions II Local analysis of limiting V-states.. SIAM J. Appl. Math. 46(5), 765–800 (1986)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    PŁotka H., Dritschel D.G.: Quasi-geostrophic shallow-water vortex-patch equilibria and their stability. Geophys. Astrophys. Fluid Dyn. 106(6), 574–595 (2012)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Polvani, L. M.: Geostrophic vortex dynamics. PhD thesis, MIT/WHOI WHOI-88-48, 1988Google Scholar
  25. 25.
    Polvani L.M., Zabusky N.J., Flierl G.R.: Two-layer geostrophic vortex dynamics. Part 1. Upper-layer V-states and merger. J. Fluid Mech. 205, 215–242 (1989)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Segura J.: Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 374, 516–528 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Shi J.: Persistence and bifurcation of degenerate solutions. J. Funct. Anal. 169(2), 494–531 (1999)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Vallis G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  29. 29.
    Watson G.N.: A Treatise on the Theory of Bessel Functions. Cambrige University Press, Cambridge (1944)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • David Gerard Dritschel
    • 1
  • Taoufik Hmidi
    • 2
  • Coralie Renault
    • 2
  1. 1.Mathematical InstituteUniversity of St AndrewsSt AndrewsUK
  2. 2.CNRS, IRMAR - UMR 6625, Univ RennesRennesFrance

Personalised recommendations