Advertisement

Archive for Rational Mechanics and Analysis

, Volume 230, Issue 3, pp 939–975 | Cite as

Enhanced Dissipation and Axisymmetrization of Two-Dimensional Viscous Vortices

  • Thierry Gallay
Article

Abstract

This paper is devoted to the stability analysis of the Lamb–Oseen vortex in the regime of high circulation Reynolds numbers. When strongly localized perturbations are applied, it is shown that the vortex relaxes to axisymmetry in a time proportional to \({Re^{2/3}}\) , which is substantially shorter than the diffusion time scale given by the viscosity. This enhanced dissipation effect is due to the differential rotation inside the vortex core. Our result relies on a recent work by Li et al. (Pseudospectral and spectral bounds for the Oseen vortices operator, 2017, arXiv:1701.06269), where optimal resolvent estimates for the linearized operator at Oseen’s vortex are established. A comparison is made with the predictions that can be found in the physical literature, and with the rigorous results that were obtained for shear flows using different techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajer, K., Bassom, A.P., Gilbert, A.D.: Accelerated diffusion in the centre of a vortex. J. Fluid Mech. 437, 395–411 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bassom, A.P., Gilbert, A.D.: The spiral wind-up of vorticity in an inviscid planar vortex. J. Fluid Mech. 371, 109–140 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bassom, A.P., Gilbert, A.D.: The spiral wind-up and dissipation of vorticity and a passive scalar in a strained planar vortex. J. Fluid Mech. 398, 245–270 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bassom, A.P., Gilbert, A.D.: The relaxation of vorticity fluctuations in locally elliptical streamlines. Proc. R. Soc. A 456, 295–314 (2000)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Bedrossian, J., Coti Zelati, M.: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shearflows. Arch. Ration. Mech. Anal. 224, 1161–1204 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bedrossian, J., Masmousi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Eulerequations. Publ. Math. IHES 122, 195–300 (2015)CrossRefGoogle Scholar
  7. 7.
    Bedrossian, J., Masmousi, N., Vicol, V.: Enhanced dissipation and inviscid damping in the inviscid limit of theNavier-Stokes equations near the two-dimensional Couette flow. Arch. Ration. Mech. Anal. 219, 1087–1159 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bedrossian, J., Vicol, V., Wang, Fei: The Sobolev stability threshold for 2D shear flows near Couette, J. Nonlinear Sci., 1–25 2017Google Scholar
  9. 9.
    Bernoff, A.J., Lingevitch, J.F.: Rapid relaxation of an axisymmetric vortex. Phys. Fluids 6, 3717–3723 (1994)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Bouchet, F., Morita, H.: Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations. Physica D 239, 948–966 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brézis, H., Gallouët, Th: Nonlinear Schrödinger evolution equations. Nonlinear Anal. Theory Methods Appl. 4, 677–681 (1980)CrossRefzbMATHGoogle Scholar
  12. 12.
    Brézis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Diff. Equ. 5, 773–789 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Carlen, E., Loss, M.: Optimal smoothing and decay estimates for viscously damped conservation laws, with applicationsto the 2-D Navier-Stokes equation. Duke Math. J. 81, 135–157 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics. Oxford University Press, Oxford, An Introduction toRotating Fluids and the Navier-Stokes Equations (2006)zbMATHGoogle Scholar
  15. 15.
    Deng, W.: Resolvent estimates for a two-dimensional non-self-adjoint operator. Commun. Pure Appl. Anal. 12, 547–596 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Deng, W.: Pseudospectrum for Oseen vortices operators. Int. Math Res. Not. 2013, 1935–1999 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gallagher, I., Gallay, Th, Nier, F.: Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator. Int. Math. Res. Not. 2009, 2147–2199 (2009)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gallay, Th.: Interaction of vortices in weakly viscous planar flows, Arch. Ration. Mech. Anal. 200, 445–4902011Google Scholar
  19. 19.
    Gallay, Th.: Stability and interaction of vortices in two-dimensional viscous flows, Discrete Contin. Dyn. Syst. Ser.S 5, 1091–1131 2012Google Scholar
  20. 20.
    Gallay, Th, Maekawa, Y.: Three-dimensional stability of Burgers vortices. Commun. Math. Phys. 302, 477–511 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gallay, Th., Maekawa, Y.: Existence and stability of viscous vortices. In: Handbook of Mathematical Analysis inMechanics of Viscous Fluids (Eds. Giga Y. and Novotny A.), Springer, Berlin, 2017Google Scholar
  22. 22.
    Gallay, Th, Wayne, C.E.: Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticityequations on \({\mathbb{R}}^2\). Arch. Ration. Mech. Anal. 163, 209–258 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gallay, Th, Wayne, C.E.: Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. Commun. Math. Phys. 255, 97–129 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gallay, Th, Wayne, C.E.: Existence and stability of asymmetric Burgers vortices. J. Math. Fluid Mech. 9, 243–261 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gallay, Th, Rodrigues, L.M.: Sur le temps de vie de la turbulence bidimensionnelle (in French). Ann. Fac. Sci. Toulouse 17, 719–733 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Helffer, B.: Spectral theory and its applications. In: Cambridge Studies in Advanced Mathematics, vol. 139, CambridgeUniversity Press, Cambridge, 2013Google Scholar
  27. 27.
    Jiménez, J., Moffatt, H.K., Vasco, C.: The structure of the vortices in freely decaying two-dimensional turbulence. J. Fluid Mech. 313, 209–222 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kato, T.: Perturbation theory for linear operators. In: Grundlehren der mathematischen Wissenschaften, vol. 132, Springer, New York, 1966Google Scholar
  29. 29.
    Li, T., Wei, D., Zhang,Z.: Pseudospectral and spectral bounds for the Oseen vortices operator. arXiv:1701.06269 2017
  30. 30.
    Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)Google Scholar
  31. 31.
    Lundgren, T.S.: Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 2193–2203 (1982)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Maekawa, Y.: Spectral properties of the linearization at the Burgers vortex in the high rotation limit. J. Math. FluidsMech. 13, 515–532 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Maekawa, Y.: On the existence of Burgers vortices for high Reynolds numbers. J. Math. Anal. Appl. 349, 181–200 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Maekawa, Y.: Existence of asymmetric Burgers vortices and their asymptotic behavior at large circulations. Math. Models Methods Appl. Sci. 19, 669–705 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Moffatt, H.K., Kida, S., Ohkitani, K.: Stretched vortices–the sinews of turbulence; large-Reynolds-numberasymptotics. J. Fluids Mech. 259, 241–264 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    Ogawa, T., Taniuchi, Y.: The limiting uniqueness criterion by vorticity for Navier-Stokes equations in Besov spaces. Tohoku Math. J. 56, 65–77 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Pazy, A.: Semigroups of linear operators and applications to partial differential equations. In: Applied MathematicalSciences, vol. 44, Springer, New York, 1983Google Scholar
  38. 38.
    Prochazka, A., Pullin, D.I.: On the two-dimensional stability of the axisymmetric Burgers vortex. Phys. Fluid 7, 1788–1790 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Prochazka, A., Pullin, D.I.: Structure and stability of non-symmetric Burgers vortices. J. Fluid Mech. 363, 199–228 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Rhines, P.B., Young, W.R.: How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133–145 (1983)ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    Robinson, A.C., Saffman, P.G.: Stability and structure of stretched vortices, Stud. Appl. Math. 70, 163–1811984Google Scholar
  42. 42.
    Ting, L., Klein, R.: Viscous Vortical Flows. Lecture Notes in Physics, vol. 374. Springer, Berlin (1991)Google Scholar
  43. 43.
    Ting, L., Tung, C.: Motion and decay of a vortex in a nonuniform stream. Phys. Fluids 8, 1039–1051 (1965)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Commun. Pure Appl, Math (2017)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut FourierUniversité Grenoble Alpes et CNRSGièresFrance

Personalised recommendations