Archive for Rational Mechanics and Analysis

, Volume 230, Issue 2, pp 593–639 | Cite as

The Vlasov–Navier–Stokes System in a 2D Pipe: Existence and Stability of Regular Equilibria

  • Olivier Glass
  • Daniel Han-Kwan
  • Ayman Moussa


In this paper, we study the Vlasov–Navier–Stokes system in a 2D pipe with partially absorbing boundary conditions. We show the existence of stationary states for this system near small Poiseuille flows for the fluid phase, for which the kinetic phase is not trivial. We prove the asymptotic stability of these states with respect to appropriately compactly supported perturbations. The analysis relies on geometric control conditions which help to avoid any concentration phenomenon for the kinetic phase.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allaire, G.: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113(3), 209–259 (1990)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anoshchenko, O., Boutet de Monvel-Berthier, A.: The existence of the global generalized solution of the system of equations describing suspension motion. Math. Methods Appl. Sci. 20(6), 495–519 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bardos, C.: Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport. Ann. Sci. École Norm. Sup. 4(3), 185–233 (1970)CrossRefMATHGoogle Scholar
  4. 4.
    Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Benjelloun, S., Desvillettes, L., Moussa, A.: Existence theory for the kinetic-fluid coupling when small droplets are treated as part of the fluid. J. Hyperbolic Differ. Equ. 11(1), 109–133 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bernard, É., Desvillettes, L., Golse, F., Ricci, V.: A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinet. Relat. Models 11(1), 43–49 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bernard, É., Salvarani, F.: On the exponential decay to equilibrium of the degenerate linear Boltzmann equation. J. Funct. Anal. 265(9), 1934–1954 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Boudin, L., Desvillettes, L., Grandmont, C., Moussa, A.: Global existence of solutions for the coupled Vlasov and Navier-Stokes equations. Differ. Integral Equ. 22(11–12), 1247–1271 (2009)MathSciNetMATHGoogle Scholar
  9. 9.
    Boudin, L., Grandmont, C., Lorz, A., Moussa, A.: Modelling and numerics for respiratory aerosols. Commun. Comput. Phys. 18(3), 723–756 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Boudin, L., Grandmont, C., Moussa, A.: Global existence of solutions to the incompressible Navier–Stokes–Vlasov equations in a time-dependent domain. J. Differ. Equ. 262(3), 1317–1340 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, vol. 183. Applied Mathematical Sciences Springer, New York (2013)MATHGoogle Scholar
  12. 12.
    Brézis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4(4), 677–681 (1980)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Carrillo, J., Duan, R., Moussa, A.: Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. Kinet. Relat. Models 4(1), 227–258 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chae, M., Kang, K., Lee, J.: Global classical solutions for a compressible fluid-particle interaction model. J. Hyperbolic Differ. Equ. 10(3), 537–562 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Choi, Y.-P.: Finite-time blow-up phenomena of Vlasov/Navier–Stokes equations and related systems. J. de Mathématiques Pures et Appliquées 108(6), 991–1021 (2017)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Choi, Y.-P., Kwon, B.: Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations. Nonlinearity 28(9), 3309 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Cioranescu, D., Murat, F.: Un terme étrange venu d'ailleurs. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. II (Paris, 1979/1980), volume 60 of Res. Notes in Math., pp. 98–138, 389–390. Pitman, Boston (1982)Google Scholar
  18. 18.
    Desvillettes, L.: Some aspects of the modeling at different scales of multiphase flows. Comput. Methods Appl. Mech. Eng. 199(21–22), 1265–1267 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Desvillettes, L., Golse, F., Ricci, V.: The mean-field limit for solid particles in a Navier-Stokes flow. J. Stat. Phys. 131(5), 941–967 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Dufour, G.: Modélisation Multi-fluide Eulérienne Pour les écoulements Diphasiques à Inclusions Dispersées. Ph.D. thesis, Université Paul-Sabatier Toulouse-III, France (2005)Google Scholar
  22. 22.
    Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001) (reprint of the 1998 edition)Google Scholar
  23. 23.
    Glass, O., Han-Kwan, D.: On the controllability of the relativistic Vlasov–Maxwell system. J. Math. Pures Appl. (9) 103(3), 695–740 (2015)Google Scholar
  24. 24.
    Goudon, T., He, L., Moussa, A., Zhang, P.: The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium. SIAM J. Math. Anal. 42(5), 2177–2202 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Goudon, T., Jabin, P.-E., Vasseur, A.: Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime. Indiana Univ. Math. J. 53(6), 1495–1515 (2004)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Hamdache, K.: Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Jpn. J. Ind. Appl. Math. 15(1), 51–74 (1998)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Han-Kwan, D., Léautaud, M.: Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium. Ann. PDE, 1(1):Art. 3, 84, (2015)Google Scholar
  28. 28.
    Hillairet, M.: On the homogenization of the Stokes problem in a perforated domain. ArXiv e-prints, April (2016)Google Scholar
  29. 29.
    Jabin, P.-E.: Large time concentrations for solutions to kinetic equations with energy dissipation. Commun. Partial Differ. Equ. 25(3–4), 541–557 (2000)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21(4), 397–431 (1976)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Li, F., Mu, Y., Wang, D.: Global well-posedness and large time behavior of strong solution to a kinetic-fluid model. ArXiv e-prints, Aug (2015)Google Scholar
  32. 32.
    Mellet, A., Vasseur, A.: Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations. Math. Models Methods Appl. Sci. 17(7), 1039–1063 (2007)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Moyano, I.: On the controllability of the 2-D Vlasov–Stokes system. Comm. Math. Sci. 15(3), 711–743 (2017) MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Moyano, I.: Local null-controllability of the 2-D Vlasov–Navier–Stokes system. arXiv preprint arXiv:1607.05578 (2016)
  35. 35.
    O'Rourke, P. J.: Collective Drop Effects on Vaporizing Liquid Sprays. Ph.D. thesis, Los Alamos National Laboratory (1981)Google Scholar
  36. 36.
    Williams, F. A.: Combustion Theory, 2nd edn. Benjamin Cummings (1985)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CEREMADE, Université Paris-Dauphine, CNRS UMR 7534, PSL Research UniversityParis Cedex 16France
  2. 2.CMLS - École polytechnique, CNRSPalaiseau CedexFrance
  3. 3.Sorbonne Université, CNRS, UMR 7598, LJLLParisFrance

Personalised recommendations