Archive for Rational Mechanics and Analysis

, Volume 230, Issue 2, pp 493–538 | Cite as

Boundary Regularity for the Porous Medium Equation

  • Anders Björn
  • Jana BjörnEmail author
  • Ugo Gianazza
  • Juhana Siljander
Open Access


We study the boundary regularity of solutions to the porous medium equation \({u_t = \Delta u^m}\) in the degenerate range \({m > 1}\). In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general—not necessarily cylindrical—domains in \({{\bf R}^{n+1}}\). One of our fundamental tools is a new strict comparison principle between sub- and superparabolic functions, which makes it essential for us to study both nonstrict and strict Perron solutions to be able to develop a fruitful boundary regularity theory. Several other comparison principles and pasting lemmas are also obtained. In the process we obtain a rather complete picture of the relation between sub/superparabolic functions and weak sub/supersolutions.


  1. 1.
    Abdulla, U.G.: On the Dirichlet problem for the nonlinear diffusion equation in non-smooth domains. J. Math. Anal. Appl. 260, 384–403 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abdulla, U.G.: Well-posedness of the Dirichlet problem for the non-linear diffusion equation in non-smooth domains. Trans. Am. Math. Soc. 357, 247–265 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183, 311–341 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andreucci, D.: \(L^\infty _{\rm loc}\)-estimates for local solutions of degenerate parabolic equations. SIAM J. Math. Anal. 22, 138–145 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aronson, D.G., Crandall, M.G., Peletier, L.A.: Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Anal. 6, 1001–1022 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Aronson, D.G., Peletier, L.A.: Large time behaviour of solutions of the porous medium equation in bounded domains. J. Differ. Equ. 39, 378–412 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Avelin, B., Lukkari, T.: Lower semicontinuity of weak super-solutions to the porous medium equation. Proc. Am. Math. Soc. 143, 3475–3486 (2015)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bauer, H.: Axiomatische Behandlung des Dirichletschen Problems für elliptische und parabolische Differentialgleichungen. Math. Ann. 146, 1–59 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Björn, A., Björn, J., Gianazza, U.: The Petrovskiĭ criterion and barriers for degenerate and singular \(p\)-parabolic equations Math. Ann. 368, 885–904 (2017)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Björn, A., Björn, J., Gianazza, U., Parviainen, M.: Boundary regularity for degenerate and singular parabolic equations. Calc. Var. Partial Differ. Equ. 52, 797–827 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Björn, A., Björn, J., Parviainen, M.: The tusk condition and Petrovskiĭ criterion for the normalized \(p\)-parabolic equation. Preprint, (2017). arXiv:1712.06807
  12. 12.
    Bögelein, V., Duzaar, F., Gianazza, U.: Porous medium type equations with measure data and potential estimates. SIAM J. Math. Anal. 45, 3283–3330 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bögelein, V., Duzaar, F., Gianazza, U.: Very weak solutions of singular porous medium equations with measure data. Commun. Pure Appl. Anal. 14, 23–49 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bögelein, V., Lukkari, T., Scheven, C.: The obstacle problem for the porous medium equation. Math. Ann. 363, 455–499 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bögelein, V., Lehtelä, P., Sturm, S.: Regularity of weak solutions and supersolutions to the porous medium equation. Preprint, (2018). arXiv:1801.05249
  16. 16.
    Dahlberg, B.E.J., Kenig, C.E.: Non-negative solutions of the porous medium equation. Commun. Partial Differ. Equ. 9, 409–437 (1984)CrossRefzbMATHGoogle Scholar
  17. 17.
    Dahlberg, B.E.J., Kenig, C.E.: Non-negative solutions of the initial-Dirichlet problem for generalized porous medium equations in cylinders. Rev. Mat. Iberoam. 2, 267–305 (1986)CrossRefzbMATHGoogle Scholar
  18. 18.
    Dahlberg, B.E.J., Kenig, C.E.: Non-negative solutions to fast diffusions. Rev. Mat. Iberoam. 4, 11–29 (1988)CrossRefzbMATHGoogle Scholar
  19. 19.
    Daskalopoulos, P., Kenig, C.E.: Degenerate Diffusions. EMS Tracts in Mathematics 1. European Math. Soc, Zürich (2007)CrossRefGoogle Scholar
  20. 20.
    DiBenedetto, E.: A boundary modulus of continuity for a class of singular parabolic equations. J. Differ. Equ. 63, 418–447 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    DiBenedetto, E.: Degenerate Parabolic Equations. Universitext, Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  22. 22.
    DiBenedetto, E.: Real Analysis. Birkhäuser Advanced Texts: Basler Lehrbücher, 2nd edn., Birkhäuser/Springer, New York, 2016Google Scholar
  23. 23.
    DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack's Inequality for Degenerate and Singular Parabolic Equations. Springer Monographs in Mathematics, Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  24. 24.
    Gariepy, R., Ziemer, W.P.: A regularity condition at the boundary for solutions of quasilinear elliptic equations. Arch. Ration. Mech. Anal. 67, 25–39 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. 3rd edn., Springer, 1998Google Scholar
  26. 26.
    Gilding, B.H., Peletier, L.A.: Continuity of solutions of the porous media equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 8, 659–675 (1981)Google Scholar
  27. 27.
    Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, 2nd edn. Dover, Mineola, NY (2006)zbMATHGoogle Scholar
  28. 28.
    Kilpeläinen, T., Lindqvist, P.: On the Dirichlet boundary value problem for a degenerate parabolic equation. SIAM J. Math. Anal. 27, 661–683 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kinnunen, J., Lindqvist, P.: Definition and properties of supersolutions to the porous medium equation. J. Reine Angew. Math. 618, 135–168 (2008)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kinnunen, J., Lindqvist, P., Lukkari, T.: Perron's method for the porous medium equation. J. Eur. Math. Soc. (JEMS) 18, 2953–2969 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Korte, R., Kuusi, T., Parviainen, M.: A connection between a general class of superparabolic functions and supersolutions. J. Evol. Equ. 10, 1–20 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kuusi, T.: Lower semicontinuity of weak supersolutions to nonlinear parabolic equations. Differ. Integr. Equ. 22, 1211–1222 (2009)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Lebesgue, H.: Sur le problème de Dirichlet. C. R. Acad. Sci. Paris 154, 335–337 (1912)zbMATHGoogle Scholar
  34. 34.
    Lebesgue, H.: Conditions de régularité, conditions d'irrégularité, conditions d'impossibilité dans le problème de Dirichlet. C. R. Acad. Sci. Paris 178, 349–354 (1924)zbMATHGoogle Scholar
  35. 35.
    Lindqvist, P.: A criterion of Petrowsky's kind for a degenerate quasilinear parabolic equation. Revista Mat. Iberoam. 11, 569–578 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. 17, 43–77 (1963)Google Scholar
  37. 37.
    Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Math. Surveys and Monographs 51, Amer. Math. Soc., Providence, RI, 1997Google Scholar
  38. 38.
    Petrowsky, I.: Über die Lösungen der ersten Randwertaufgabe der Wärmeleitungsgleichung. Uchebn. Zapiski Moskov. Gos. Univ. 2, 55–59 (1934)zbMATHGoogle Scholar
  39. 39.
    Petrowsky, I.: Zur ersten Randwertaufgabe der Wärmeleitungsgleichung. Compos. Math. 1, 383–419 (1935)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Poincaré, H.: Sur les équations aux dérivées partielles de la physique mathématique. Amer. J. Math. 12, 211–294 (1890)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Vázquez, J.L.: The Porous Medium Equation. Oxford Mathematical Monographs. Oxford Univ. Press, Oxford (2007)Google Scholar
  42. 42.
    Vespri, V.: On the local behaviour of solutions of a certain class of doubly nonlinear parabolic equations. Manuscripta Math. 75, 65–80 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Watson, N.A.: Introduction to Heat Potential Theory. Mathematical Surveys and Monographs 182. Amer. Math. Soc, Providence, RI (2012)Google Scholar
  44. 44.
    Wiener, N.: The Dirichlet problem. J. Math. Phys. 3, 127–146 (1924)CrossRefzbMATHGoogle Scholar
  45. 45.
    Ziemer, W.P.: Interior and boundary continuity of weak solutions of degenerate parabolic equations. Trans. Am. Math. Soc. 271, 733–748 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsLinköping UniversityLinköpingSweden
  2. 2.Department of Mathematics “F. Casorati”Università di PaviaPaviaItaly
  3. 3.Department of Mathematics and StatisticsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations