Advertisement

Archive for Rational Mechanics and Analysis

, Volume 230, Issue 1, pp 231–275 | Cite as

Hysteresis and Phase Transitions in a Lattice Regularization of an Ill-Posed Forward–Backward Diffusion Equation

  • Michael Helmers
  • Michael Herrmann
Article
  • 61 Downloads

Abstract

We consider a lattice regularization for an ill-posed diffusion equation with a trilinear constitutive law and study the dynamics of phase interfaces in the parabolic scaling limit. Our main result guarantees for a certain class of single-interface initial data that the lattice solutions satisfy asymptotically a free boundary problem with a hysteretic Stefan condition. The key challenge in the proof is to control the microscopic fluctuations that are inevitably produced by the backward diffusion when a particle passes the spinodal region.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barenblatt, G.I., Bertsch, M., Dal Passo, R., Ughi, M.: A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow. SIAM J. Math. Anal. 24(6), 1414–1439 (1993).  https://doi.org/10.1137/0524082 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bellettini, G., Bertini, L., Mariani, M., Novaga, M.: Convergence of the One-dimensional Cahn-Hilliard equation. SIAM J. Math. Anal. 44(5), 3458–3480 (2012).  https://doi.org/10.1137/120865410 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bellettini, G., Geldhauser, C., Novaga, M.: Convergence of a semidiscrete scheme for a forward-backward parabolic equation. Adv. Differ. Equ. 18(5/6), 495–522 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bertsch, M., Smarrazzo, F., Tesei, A.: Nonuniqueness of solutions for a class of forward-backward parabolic equations. Nonlinear Anal. 137, 190–212 (2016).  https://doi.org/10.1016/j.na.2015.12.028 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bonetti, E., Colli, P., Tomassetti, G.: A non-smooth regularization of a forward-backward parabolic equation. Math. Models Methods Appl. Sci. 27(4), 641–661 (2017).  https://doi.org/10.1142/S0218202517500129 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Braides, A.: Local Minimization, Variational Evolution and \({\varvec \Gamma}\) -Convergence. Lecture Notes in Mathematics, vol. 2094. Springer, Cham (2014)  https://doi.org/10.1007/978-3-319-01982-6
  7. 7.
    Elliott, C.M.: The Stefan problem with a nonmonotone constitutive relation. IMA J. Appl. Math. 35(2), 257–264 (1985).  https://doi.org/10.1093/imamat/35.2.257. Special issue: IMA conference on crystal growth (Oxford, 1985) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Esedoḡlu, S., Greer, J.B.: Upper bounds on the coarsening rate of discrete, ill-posed nonlinear diffusion equations. Commun. Pure Appl. Math. 62(1), 57–81 (2009).  https://doi.org/10.1002/cpa.20259 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Esedoḡlu, S., Slepcev, D.: Refined upper bounds on the coarsening rate of discrete, ill-posed diffusion equations. Nonlinearity 21(12), 2759–2776 (2008).  https://doi.org/10.1088/0951-7715/21/12/002 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Evans, L.C., Portilheiro, M.: Irreversibility and hysteresis for a forward-backward diffusion equation. Math. Models Methods Appl. Sci. 14(11), 1599–1620 (2004).  https://doi.org/10.1142/S0218202504003763 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Geldhauser, C., Novaga, M.: A semidiscrete scheme for a one-dimensional Cahn-Hilliard equation. Interfaces Free Bound. 13(3), 327–339 (2011).  https://doi.org/10.4171/IFB/260 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gilding, B.H., Tesei, A.: The Riemann problem for a forward-backward parabolic equation. Physica D 239(6), 291–311 (2010).  https://doi.org/10.1016/j.physd.2009.10.006 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gurevich, P., Shamin, R., Tikhomirov, S.: Reaction-diffusion equations with spatially distributed hysteresis. SIAM J. Math. Anal. 45(3), 1328–1355 (2013).  https://doi.org/10.1137/120879889 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gurevich, P., Tikhomirov, S.: Rattling in spatially discrete diffusion equations with hysteresis (2016). ArXiv preprint no. arXiv:1601.05728
  15. 15.
    Helmers, M., Herrmann, M.: Interface dynamics in discrete forward-backward diffusion equations. Multiscale Model. Simul. 11(4), 1261–1297 (2013).  https://doi.org/10.1137/130915959 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hilpert, M.: On uniqueness for evolution problems with hysteresis. Mathematical Models for Phase Change Problems (Óbidos. 1988), International Series of Numerical Mathematics, vol. 88, pp. 377–388. Birkhäuser, Basel (1989)Google Scholar
  17. 17.
    Holle, M.: Microstructure in Forward–Backward Lattice Diffusion. Master’s thesis, University of Bonn 2016Google Scholar
  18. 18.
    Höllig, K.: Existence of infinitely many solutions for a forward backward heat equation. Trans. Am. Math. Soc. 278(1), 299–316 (1983).  https://doi.org/10.2307/1999317 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Horstmann, D., Painter, K.J., Othmer, H.G.: Aggregation under local reinforcement: from lattice to continuum. Eur. J. Appl. Math. 15(5), 546–576 (2004).  https://doi.org/10.1017/S0956792504005571 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lafitte, P., Mascia, C.: Numerical exploration of a forward–backward diffusion equation. Math. Models Methods Appl. Sci. 22(6), 1250,004, 33 (2012).  https://doi.org/10.1142/S0218202512500042
  21. 21.
    Mascia, C., Terracina, A., Tesei, A.: Two-phase entropy solutions of a forward-backward parabolic equation. Arch. Ration. Mech. Anal. 194(3), 887–925 (2009).  https://doi.org/10.1007/s00205-008-0185-6 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mielke, A., Truskinovsky, L.: From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Ration. Mech. Anal. 203(2), 577–619 (2012).  https://doi.org/10.1007/s00205-011-0460-9 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Novick-Cohen, A., Pego, R.L.: Stable patterns in a viscous diffusion equation. Trans. Am. Math. Soc. 324(1), 331–351 (1991).  https://doi.org/10.2307/2001511 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Otto, F., Reznikoff, M.: Slow motion of gradient flows. J. Differ. Equ. 237(2), 372–420 (2007).  https://doi.org/10.1016/j.jde.2007.03.007 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Padrón, V.: Effect of aggregation on population revovery modeled by a forward–backward pseudoparabolic equation. Trans. Am. Math. Soc. 356(7), 2739–2756 (electronic) (2004).  https://doi.org/10.1090/S0002-9947-03-03340-3
  26. 26.
    Peletier, M.A., Savaré, G., Veneroni, M.: Chemical reactions as \(\Gamma \)-limit of diffusion [revised reprint of mr2679596]. SIAM Rev. 54(2), 327–352 (2012).  https://doi.org/10.1137/110858781 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Perona, P., Malik, J.: Scale-space and edge-detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990).  https://doi.org/10.1109/34.56205 CrossRefGoogle Scholar
  28. 28.
    Pierre, M.: Uniform convergence for a finite-element discretization of a viscous diffusion equation. IMA J. Numer. Anal. 30(2), 487–511 (2010).  https://doi.org/10.1093/imanum/drn055 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Plotnikov, P.I.: Passing to the limit with respect to viscosity in an equation with variable parabolicity direction. Differ. Equ. 30(4), 614–622 (1994)zbMATHGoogle Scholar
  30. 30.
    Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. 31(4), 1427–1451 (2011).  https://doi.org/10.3934/dcds.2011.31.1427 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Smarrazzo, F., Tesei, A.: Long-time behavior of solutions to a class of forward-backward parabolic equations. SIAM J. Math. Anal. 42(3), 1046–1093 (2010).  https://doi.org/10.1137/090763561 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Smarrazzo, F., Tesei, A.: Some recent results concerning a class of forward–backward parabolic equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 22(2), 175–188 (2011).  https://doi.org/10.4171/RLM/594
  33. 33.
    Terracina, A.: Non-uniqueness results for entropy two-phase solutions of forward-backward parabolic problems with unstable phase. J. Math. Anal. Appl. 413(2), 963–975 (2014).  https://doi.org/10.1016/j.jmaa.2013.12.045 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Terracina, A.: Two-phase entropy solutions of forward-backward parabolic problems with unstable phase. Interfaces Free Bound. 17(3), 289–315 (2015).  https://doi.org/10.4171/IFB/343 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Visintin, A.: Quasilinear parabolic P.D.E.s with discontinuous hysteresis. Ann. Mat. Pura Appl. 185(4), 487–519 (2006).  https://doi.org/10.1007/s10231-005-0164-6 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Yin, J., Wang, C.: Young measure solutions of a class of forward-backward diffusion equations. J. Math. Anal. Appl. 279(2), 659–683 (2003).  https://doi.org/10.1016/S0022-247X(03)00054-4 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhang, K.: On existence of weak solutions for one-dimensional forward-backward diffusion equations. J. Differ. Equ. 220(2), 322–353 (2006).  https://doi.org/10.1016/j.jde.2005.01.011 ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany
  2. 2.Institute der MathematikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations