Archive for Rational Mechanics and Analysis

, Volume 228, Issue 3, pp 867–889 | Cite as

Approximation of a Brittle Fracture Energy with a Constraint of Non-interpenetration

  • Antonin Chambolle
  • Sergio Conti
  • Gilles A. Francfort
Article
  • 56 Downloads

Abstract

Linear fracture mechanics (or at least the initiation part of that theory) can be framed in a variational context as a minimization problem over an SBD type space. The corresponding functional can in turn be approximated in the sense of \({\Gamma}\)-convergence by a sequence of functionals involving a phase field as well as the displacement field. We show that a similar approximation persists if additionally imposing a non-interpenetration constraint in the minimization, namely that only nonnegative normal jumps should be permissible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosio L., Coscia A., Dal Maso G.: Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139(3), 201–238 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ambrosio L., Tortorelli V.M.: Approximation of functionals depending on jumps by elliptic functionals via \({\Gamma}\)-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York 2000Google Scholar
  4. 4.
    Amor H., Marigo J.J., Maurini C.: Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J. Mech, Phys. Solids 57(8), 1209–1229 (2009)ADSCrossRefMATHGoogle Scholar
  5. 5.
    Bellettini G., Coscia A., Dal Maso G.: Compactness and lower semicontinuity properties in \({SBD(\Omega)}\). Mathematische Zeitschrift 228, 337–351 (1998)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bourdin B., Chambolle A.: Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85(4), 609–646 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bourdin B., Francfort G.A., Marigo J.J.: The variational approach to fracture. J. Elasticity 91(1,2,3), 5–148 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Braides A., Chambolle A., Solci M.: A relaxation result for energies defined on pairs set-function and applications. ESAIM Control Optim. Calc. Var. 13(4), 717–734 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Carriero M., Leaci A.: Existence theorem for a Dirichlet problem with free discontinuity set. Nonlinear Anal. 15(7), 661–677 (1990)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chambolle A.: An approximation result for special functions with bounded variations. J. Math Pures Appl. 83, 929–954 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chambolle, A.: Addendum to “An approximation result for special functions with bounded deformation” [J. Math. Pures Appl. (9) 83 (7) (2004) 929–954]: the N-dimensional case, J. Math Pures Appl. 84, 137–145 2005Google Scholar
  12. 12.
    Chambolle A., Conti S., Francfort G.A.: Korn-Poincaré inequalities for functions with a small jump set. Indiana Univ. Math. J. 65(4), 1373–1399 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chambolle, A., Crismale, V.: A density result in GSBD p with applications to the approximation of brittle fracture energies, preprint arXiv:1708.03281, 2017
  14. 14.
    Chambolle, A., Conti, S., Iurlano, F.: Approximation of functions with small jump sets and existence of strong minimizers of Griffith’s energy, preprint arXiv:1710.01929 2017
  15. 15.
    Conti S., Focardi M., Iurlano F.: Existence of minimizers for the 2d stationary Griffith fracture model. C. R. Math. Acad. Sci. Paris 354, 1055–1059 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Conti S., Focardi M., Iurlano F.: Integral representation for functionals defined on SBD p in dimension two. Arch. Ration. Mech. Anal. 223(3), 1337–1374 (2017)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Conti, S., Focardi, M., Iurlano, F.: Approximation of fracture energies with p-growth via piecewise affine finite elements, preprint arXiv:1706.01735, 2017
  18. 18.
    Dal Maso G.: Generalised functions of bounded deformation. J. Eur. Math. Soc. 15(5), 1943–1997 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dal Maso G., Lazzaroni G.: Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 257–290 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Dal Maso G., Lazzaroni G.: Crack growth with non-interpenetration: a simplified proof for the pure Neumann problem. Discrete Contin. Dyn. Syst. 31, 1219–1231 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    De Giorgi E., Carriero M., Leaci A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108(3), 195–218 (1989)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Del Piero G.: Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica 24(3), 150–162 (1989)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Francfort G.A., Marigo J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Freddi F., Royer-Carfagni G.: Regularized variational theories of fracture: a unified approach. J. Mech. Phys. Solids 58, 1154–1174 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Freddi F., Royer-Carfagni G.: Variational fracture mechanics to model compressive splitting of masonry-like materials. Ann. Solid Struct. Mech. 2, 57–67 (2011)CrossRefGoogle Scholar
  26. 26.
    Friedrich, M., Solombrino, F.: Quasistatic crack growth in 2d-linearized elasticity, to appear in Annales Institut H Poincaré Anal. Non LinéaireGoogle Scholar
  27. 27.
    Giacomini A., Ponsiglione M.: Non-interpenetration of matter for SBV deformations of hyperelastic brittle materials. Proc. Roy. Soc. Edinburgh Sect. A 138(5), 1019–1041 (2008)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Griffith, A.A.: 1920, The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. A CCXXI(A), 163–198 1920Google Scholar
  29. 29.
    Iurlano F.: A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. Partial Differ. Equ. 51(1,2), 315–342 (2014)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Lancioni G., Royer-Carfagni G.: The Variational Approach to Fracture Mechanics. A Practical Application to the French Panthéon in Paris. J. Elast. 95(1,2), 1–30 (2009)MATHGoogle Scholar
  31. 31.
    Ortiz M.: A constitutive theory for the inelastic behavior of concrete. Mech. Mater. 1(4), 67–93 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.CMAP, Ecole PolytechniqueCNRSPalaiseau CedexFrance
  2. 2.Institut für Angewandte MathematikUniversität BonnBonnGermany
  3. 3.LAGA, Université Paris-NordVilletaneuseFrance
  4. 4.Courant InstituteNew YorkUSA

Personalised recommendations