Archive for Rational Mechanics and Analysis

, Volume 228, Issue 3, pp 821–866 | Cite as

Periodic Solutions to a Cahn–Hilliard–Willmore Equation in the Plane

Article
  • 98 Downloads

Abstract

In this paper we construct entire solutions to the phase field equation of Willmore type \({-\Delta(-\Delta u+W^{\prime}(u))+W^{\prime\prime}(u)(-\Delta u+W^{\prime}(u))=0}\) in the Euclidean plane, where W(u) is the standard double-well potential \({\frac{1}{4} (1-u^2)^2}\) . Such solutions have a non-trivial profile that shadows a Willmore planar curve, and converge uniformly to \({\pm 1}\) as \({x_2 \to \pm \infty}\) . These solutions give a counterexample to the counterpart of Gibbons’ conjecture for the fourth-order counterpart of the Allen–Cahn equation. We also study the x 2-derivative of these solutions using the special structure of Willmore’s equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55Google Scholar
  2. 2.
    Agudelo O., del Pino M., Wei J.: Solutions with multiple catenoidal ends to the Allen–Cahn equation in \({\mathbb{R}^3}\). J. Math. Pures Appl. (9) 103(1), 142–218 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alberti, G., Ambrosio, L., Cabre, X.: On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl. Math. 65(1–3), 9–33 (2001)Google Scholar
  4. 4.
    Alinhac, S., Gérard, P.: Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterEditions/Editions du CNRS, 1991Google Scholar
  5. 5.
    Allen S. M., Cahn J. W.: Ground state structures in ordered binary alloys with second neighbor interactions. Acta Met. 20 423(6), 921–1107 (1972)Google Scholar
  6. 6.
    Andrews, G. E., Askey, R. R.: Special Functions, Encyclopedia of Mathematics and Its Applications, Vol 71. Cambridge University Press, Cambridge, 1999Google Scholar
  7. 7.
    Barlow M., Bass R., Gui C.: The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math. 53, 1007–1038 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bauer, M., Kuwert, E.: Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. (10), 553–576 (2003)Google Scholar
  9. 9.
    Beals, R., Wong, R.: Special functions, A graduate text. Cambridge Studies in Advanced Mathematics, 126. Cambridge University Press, Cambridge, 2010Google Scholar
  10. 10.
    Bellettini, G., Paolini, M.: Approssimazione variazionale di funzioni con curvatura, Seminario di analisi matematica, Univ. Bologna, 1993Google Scholar
  11. 11.
    Beresticky H., Hamel F., Monneau R.: One-dimensional symmetry of bounded entire solutions of some elliptic equations. Duke Math. J. 103, 375–396 (1999)MathSciNetGoogle Scholar
  12. 12.
    Bombieri E., De Giorgi E., Giusti E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cabré X., Terra J.: Saddle-shaped solutions of bistable diffusion equations in all of \({\mathbb{R}^{2m}}\). J. Eur. Math. Soc. 11(4), 819–843 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cahn J. W., Hilliard J. E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys 28, 258, 258–267 (1958)CrossRefGoogle Scholar
  15. 15.
    Danchin, R.: Fourier Analysis Methods for PDEs. Available at http://perso-math.univmlv.fr/users/danchin.raphael/teaching.html (2005)
  16. 16.
    Dang H., Fife P., Peletier L. A.: Saddle solutions of the bistable diffusion equation. Z. Angew. Math. Phys. 43(6), 984–998 (1992)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    del Pino M., Kowalczyk M., Pacard F., Wei J.: Multiple-end solutions to the Allen–Cahn equation in \({\mathbb{R}^2}\). J. Funct. Anal. 258(2), 458–503 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    del Pino M., Kowalczyk M., Wei J.: On De Giorgi’s conjecture in dimension \({N \geq 9}\) . Ann. Math. 174, 1485–1569 (2011)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    del Pino M., Musso M., Pacard F.: Solutions of the Allen–Cahn equation which are invariant under screw-motion. Manuscr. Math. 138(3–4), 273–286 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    De Giorgi, E.: Convergence problems for functionals and operators. In: Proceedings of Internat. Meeting on Recent Methods in Nonlinear Analysis, (Rome, 1978) (E. De Giorgi et al., eds.), Pitagora, Bologna, 131–188, 1979Google Scholar
  21. 21.
    Erdélyi A., Tricomi F. G.: The asymptotic expansion of a ratio of gamma functions. Pac. J. Math. 1(1), 133–142 (1951)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Farina A.: Symmetry for solutions of semilinear elliptic equations in R N and related conjectures. Ricerche Math. 48, 129–154 (1999)MathSciNetMATHGoogle Scholar
  23. 23.
    Gazzola, F., Grunau, H.-C., Sweers, G.: Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains. Lecture Notes in Mathematics, 1991. Springer, Berlin, 2010Google Scholar
  24. 24.
    Ghoussoub N., Gui C.: On a conjecture of De Giorgi and some related problems. Math. Ann. 311, 481–491 (1998)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order second edition, Grundlehren der Mathematischen Wissenschaften, 224, Springer, Berlin, 1983Google Scholar
  26. 26.
    Hutchinson J., Tonegawa Y.: Convergence of phase interfaces in the van der Waals–Cahn–Hilliard theory. Calc. Var. Partial Differ. Equ. 10(1), 49–84 (2000)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Lamm T., Metzger J., Schulze F.: Foliations of asymptotically flat manifolds by surfaces of Willmore type. Math. Ann. 350(1), 1–78 (2011)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Malchiodi, A.,Wei, J.: Boundary interface for theAllen-Cahn equation. J. Fixed Point Theory Appl. 1(2), 305-336 (2007)Google Scholar
  29. 29.
    Mandel, R.: Boundary value problems for Willmore curves in \({{\mathbb{R}^2}}\) Calc. Var. Partial Differ. Equ. 54(4), 3905–3925 (2015)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Marques F., Neves A.: Min–max theory and the Willmore conjecture. Ann. Math. (2) 179(2), 683–782 (2014)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98(2), 123–142 (1987)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Modica L., Mortola S.: Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B (5) 14(1), 285–299 (1977)MathSciNetMATHGoogle Scholar
  33. 33.
    Nagase Y., Tonegawa Y.: A singular perturbation problem with integral curvature bound. Hiroshima Math. J. 37(3), 455–489 (2007)MathSciNetMATHGoogle Scholar
  34. 34.
    Pacard F., Ritoré M.: From constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Differ. Geom. 64(3), 359–423 (2003)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Rizzi M.: Clifford Tori and the singularly perturbed Cahn–Hilliard equation. J. Diff. Equ. 15, 5306–5362 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Röger M., Schätzle R.: On a modified conjecture of De Giorgi. Math. Z. 254(4), 675–714 (2006)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Savin O.: Regularity of flat level sets in phase transitions. Ann. Math. (2) 169(1), 41–78 (2009)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Sternberg P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Rat. Mech. Anal. 101(3), 209–260 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Institut für AnalysisKITKarlsruheGermany
  3. 3.Centro de Modelamiento MatemáticoUniversidad de ChileSantiagoChile

Personalised recommendations