Global Regularity for the Fractional Euler Alignment System

  • Tam Do
  • Alexander Kiselev
  • Lenya Ryzhik
  • Changhui TanEmail author


We study a pressureless Euler system with a non-linear density-dependent alignment term, originating in the Cucker–Smale swarming models. The alignment term is dissipative in the sense that it tends to equilibrate the velocities. Its density dependence is natural: the alignment rate increases in the areas of high density due to species discomfort. The diffusive term has the order of a fractional Laplacian \({(-\partial _{xx})^{\alpha/2}, \alpha \in (0, 1)}\). The corresponding Burgers equation with a linear dissipation of this type develops shocks in a finite time. We show that the alignment nonlinearity enhances the dissipation, and the solutions are globally regular for all \({\alpha \in (0, 1)}\). To the best of our knowledge, this is the first example of such regularization due to the non-local nonlinear modulation of dissipation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn S.M., Choi H., Heesun H., Ha S.-Y., Lee H.: On collision-avoiding initial configurations to Cucker–Smale type flocking models. Commun. Math. Sci. 10, 625–643 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alibaud N., Droniou J., Vovelle J.: Occurrence and non-appearance of shocks in fractal Burgers equations. J. Hyperbolic Differ. Equ. 4, 479–499 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bahouri H., Chemin J.-Y., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Baker G.R., Li X., Morlet A.C.: Analytic structure of two 1D-transport equations with nonlocal fluxes. Physica D 91, 349–375 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bedrossian J.: Large mass global solutions for a class of L 1-critical nonlocal aggregation equations and parabolic-elliptic Patlak–Keller–Segel models. Commun. PDE 40, 1119–1136 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bedrossian J., Kim I.: Global existence and finite time blow-up for critical Patlak–Keller–Segel models with inhomogeneous diffusion. SIAM J. Math. Anal. 45, 934–964 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bedrossian J., Rodrguez N.: Inhomogeneous Patlak–Keller–Segel models and aggregation equations with nonlinear diffusion in \({{{\mathbb{R} }}^d}\). Discrete Continuous Dyn. Syst. Ser. B 19, 1279–1309 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bedrossian J., Rodriguez N., Bertozzi A.: Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion. Nonlinearity 24, 1683–1714 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bertozzi A., Slepcev D.: Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Commun. Pure Appl. Anal. 9, 1617–1637 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Caffarelli L., Soria F., Vaziuez J.L.: Regularity of solutions of the fractional porous medium flow. J. Eur Math. Soc. 15, 1701–1746 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Caffarelli L., Vazquez J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Rational Mech. Anal. 202, 537–565 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carlen E., Carvalho M., Degond P., Wennberg B.: A Boltzmann model for rod alignment and schooling fish. Nonlinearity 28, 1783–1803 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Carrillo J.A., Choi Y.-P., Mucha P., Peszek S.: Sharp conditions to avoid collisions in singular Cucker–Smale interactions. Nonlinear Anal. Real World Appl. 37, 317–328 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carrillo J.A., Choi Y.-P., Tadmor E., Tan C.: Critical thresholds in 1D Euler equations with nonlocal forces. Math. Models Methods Appl. Sci. 26, 185–206 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Carrillo, J.A., Choi, Y.-P., Pérez, S.: A Review on Attractive-Repulsive Hydrodynamics for Consensus in Collective Behavior, to Appear in Active Particles Vol. I—Theory, Models, Applications, Series: Modeling and Simulation in Science and Technology.Birkhäuser-Springer, BostonGoogle Scholar
  16. 16.
    Carrillo J.A., Fornasier M., Rosado J., Toscani G.: Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM J. Math. Anal. 42, 218–236 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chae D., Córdoba A., D. Córdoba D., Fontelos M.A.: Finite time singularities in a 1D model of the quasi-geostrophic equation. Adv. Math. 194, 203–223 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Choi, Y.-P., Ha, S.-Y., Li, Z.: Emergent Dynamics of the Cucker–Smale Flocking Model and Its Variants, to Appear in Active Particles Vol. I—Theory, Models, Applications, Series: Modeling and Simulation in Science and Technology. Birkhauser-Springer, BostonGoogle Scholar
  19. 19.
    Chuanga, Yao-li, DOrsognab, M.R., Marthalerc, D., Bertozzia, A.L., Chayes, L.S.: State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Physica D 232, 33–47 (2007)Google Scholar
  20. 20.
    Constantin P., Vicol V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22, 1289–1321 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Cucker F., Smale S.: Emergent behavior in flocks. IEEE Trans Autom. Control, 52, 852–862 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Degond P., Dimarco G., Mac T.B.N., Wang N.: Macroscopic models of collective motion with repulsion. Commun. Math. Sci. 13, 1615–1638 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Degond P., Frouvelle A., Liu J.-G.: Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics Arch. Ration. Mech. Anal. 216, 63–115 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Degond P., Amic A., Raoul G.: Local stability of perfect alignment for a spatially homogeneous kinetic model. J. Stat. Phys. 157, 84–112 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Degond P., Liu J.-G., Motsch S., Panferov V.: Hydrodynamic models of self-organized dynamics: derivation and existence theory. Methods Appl. Anal. 20, 89–114 (2013)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Ha S.-Y., Liu J.-G.: A simple proof of the Cucker–Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7, 297–325 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ha S.-Y., Tadmor E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic Relat. Methods 1, 415–435 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Karper T., Mellet A., Trivisa K.: Hydrodynamic limit of the kinetic Cucker–Smale flocking model. Math. Models Methods Appl. Sci. 25, 131–163 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kato T., Ponce G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kenig C.E., Ponce G., Vega L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kiselev A.: Nonlocal maximum principles for active scalars. Adv. Math. 227, 1806–1826 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kiselev A., Nazarov F., Shterenberg R.: Blow up and regularity for fractal Burgers equation. Dyn. PDE, 5, 211–240 (2008)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Kiselev A., Nazarov F., Volberg A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Levine H., Rappel W.-J., Cohen I.: Self-organization in systems of self-propelled particles. Phys. Rev. E 63, 017101 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    Motsch S., Tadmor E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144, 923–947 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Mucha, P., Peszek, S.: The Cucker–Smale equation: singular communication weight, measure solutions and weak-atomic uniqueness Arch. Ration. Mech. Anal. (2017)Google Scholar
  37. 37.
    Peszek J.: Existence of piecewise weak solutions of a discrete Cucker–Smale’s flocking model with a singular communication weight. J. Differ. Equ. 257, 2900–2925 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Peszek J.: Discrete Cucker–Smale flocking model with a weakly singular weight. SIAM J. Math. Anal. 47, 3671–3686 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Shvydkoy, R., Tadmor, E.: Eulerian dynamics with a commutator forcing. Trans. Math. Appl. 1, 1 (2017)Google Scholar
  40. 40.
    Tadmor, E., Tan, C.: Critical thresholds in flocking hydrodynamics with non-local alignment. Philos. Trans. R. Soc. Lond. A 372, 20130401 (22 pp.) (2014)Google Scholar
  41. 41.
    Tan C.: A discontinuous Galerkin method on kinetic flocking models. Math. Models Methods Appl. Sci. 27, 1199–1211 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Vicsek T., Zafeiris A.: Collective motion. Phys. Rep. 517, 71–140 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of MathematicsDuke UniversityDurhamUSA
  3. 3.Department of MathematicsStanford UniversityStanfordUSA
  4. 4.Department of MathematicsRice UniversityHoustonUSA

Personalised recommendations