Advertisement

Archive for Rational Mechanics and Analysis

, Volume 227, Issue 1, pp 105–147 | Cite as

Convergence of Phase-Field Free Energy and Boundary Force for Molecular Solvation

  • Shibin Dai
  • Bo Li
  • Jianfeng Lu
Article
  • 125 Downloads

Abstract

We study a phase-field variational model for the solvation of charged molecules with an implicit solvent. The solvation free-energy functional of all phase fields consists of the surface energy, solute excluded volume and solute-solvent van der Waals dispersion energy, and electrostatic free energy. The surface energy is defined by the van der Waals–Cahn–Hilliard functional with squared gradient and a double-well potential. The electrostatic part of free energy is defined through the electrostatic potential governed by the Poisson–Boltzmann equation in which the dielectric coefficient is defined through the underlying phase field. We prove the continuity of the electrostatics—its potential, free energy, and dielectric boundary force—with respect to the perturbation of the dielectric boundary. We also prove the \({\Gamma}\)-convergence of the phase-field free-energy functionals to their sharp-interface limit, and the equivalence of the convergence of total free energies to that of all individual parts of free energy. We finally prove the convergence of phase-field forces to their sharp-interface limit. Such forces are defined as the negative first variations of the free-energy functional; and arise from stress tensors. In particular, we obtain the force convergence for the van der Waals–Cahn–Hilliard functionals with minimal assumptions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acerbi E., Bouchitté G.: A general class of phase transition models with weighted interface energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(6), 1111–1143 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Allen S.M., Cahn J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)CrossRefGoogle Scholar
  3. 3.
    Andelman, D.: Electrostatic properties of membranes: the Poisson–Boltzmann theory. In: Lipowsky, R., Sackmann, E. (eds.) Handbook of Biological Physics, vol. 1, pp. 603–642. Elsevier, Amsterdam 1995Google Scholar
  4. 4.
    Berne B.J., Weeks J.D., Zhou R.: Dewetting and hydrophobic interaction in physical and biological systems. Annu. Rev. Phys. Chem. 60, 85–103 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)Google Scholar
  6. 6.
    Cai Q., Ye X., Luo R.: Dielectric pressure in continuum electrostatic solvation of biomolecules. Phys. Chem. Chem. Phys. 14, 15917–15925 (2012)CrossRefGoogle Scholar
  7. 7.
    Chandler D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Che J., Dzubiella J., Li B., McCammon J.A.: Electrostatic free energy and its variations in implicit solvent models. J. Phys. Chem. B 112, 3058–3069 (2008)CrossRefGoogle Scholar
  9. 9.
    Cheng H.-B., Cheng L.-T., Li B.: Yukawa-field approximation of electrostatic free energy and dielectric boundary force. Nonlinearity 24, 3215–3236 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cheng L.-T., Xie Y., Dzubiella J., McCammon J.A., Che J., Li B.: Coupling the level-set method with molecular mechanics for variational implicit solvation of nonpolar molecules. J. Chem. Theory Comput. 5, 257–266 (2009)CrossRefGoogle Scholar
  11. 11.
    Davis M.E., McCammon J.A.: Electrostatics in biomolecular structure and dynamics. Chem. Rev. 90, 509–521 (1990)CrossRefGoogle Scholar
  12. 12.
    Dzubiella J., Swanson J.M.J., McCammon J.A.: Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Phys. Rev. Lett. 96, 087802 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Dzubiella J., Swanson J.M.J., McCammon J.A.: Coupling nonpolar and polar solvation free energies in implicit solvent models. J. Chem. Phys. 124, 084905 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton 1992Google Scholar
  15. 15.
    Fonseca I., Morini M., Slastikov V.: Surfactants in foam stability: A phase-field model. Arch. Ration. Mech. Anal. 183(3), 411–456 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin 1983Google Scholar
  17. 17.
    Giusti E.: Minimal Surfaces and Functions of Bounded Variation. Birkhauser, Boston (1984)CrossRefzbMATHGoogle Scholar
  18. 18.
    Hasted J.B., Riston D.M., Collie C.H.: Dielectric properties of aqueous ionic solutions. parts I and II. J. Chem. Phys. 16, 1–21 (1948)ADSCrossRefGoogle Scholar
  19. 19.
    Hutchinson J.E., Tonegawa Y.: Convergence of phase interfaces in the van der Waals–Cahn–Hilliard theory. Calc. Var. Partial Differ. Equ. 10, 49–84 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ilmanen T.: Convergence of the Allen–Cahn equation to Brakkes motion by mean curvature. J. Diff. Geom. 38, 417–461 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li B.: Minimization of electrostatic free energy and the Poisson–Boltzmann equation for molecular solvation with implicit solvent. SIAM J. Math. Anal. 40, 2536–2566 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li B., Cheng X.-L., Zhang Z.-F.: Dielectric boundary force in molecular solvation with the Poisson–Boltzmann free energy: a shape derivative approach. SIAM J. Appl. Math. 71, 2093–2111 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li B., Liu Y.: Diffused solute-solvent interface with Poisson–Boltzmann electrostatics: free-energy variation and sharp-interface limit. SIAM J. Appl. Math. 75, 2072–2092 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Li B., Zhao Y.: Variational implicit solvation with solute molecular mechanics: from diffuse-interface to sharp-interface models. SIAM J. Appl. Math. 73(1), 1–23 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lum K., Chandler D., Weeks J.D.: Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999)CrossRefGoogle Scholar
  26. 26.
    Mizuno M., Tonegawa Y.: Convergence of the Allen–Cahn equation with Neumann boundary conditions. SIAM J. Math. Anal. 47, 1906–1932 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Modica L., Mortola S.: Un esempio di \({\Gamma-}\) convergenza. Boll. Un. Mat. Ital. B 14(5), 285–299 (1977)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Padilla P., Tonegawa Y.: On the convergence of stable phase transitions. Commun. Pure Appl. Math. LI, 551–579 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Röger M., Schätzle R.: On a modified conjuecture of De Giorgi. Math. Z. 254, 675–714 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Rowlinson J.S.: Translation of J. D. van der Waals’ The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys. 20, 197–244 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Sato N.: A simple proof of convergence of the Allen–Cahn equation to Brakkes motion by mean curvature. Indiana Univ. Math. J. 57, 1743–1751 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sharp K.A., Honig B.: Electrostatic interactions in macromolecules: theory and applications. Annu. Rev. Biophys. Chem., 19, 301–332 (1990)CrossRefGoogle Scholar
  34. 34.
    Sternberg P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101, 209–260 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sun H., Wen J., Zhao Y., Li B., McCammon J.A.: A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson–Boltzmann electrostatics. J. Chem. Phys. 143, 243110 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    van der Waals, J.D.: Thermodynamische theorie der capillariteit in de onderstelling van continue dichtheidsverandering. Verhand. Kon. Akad. v Wetensch. Amst. Sect. 1 1893 (in Dutch) Google Scholar
  37. 37.
    Wang Z., Che J., Cheng L.-T., Dzubiella J., Li B., McCammon J.A.: Level-set variational implicit solvation with the Coulomb-field approximation. J. Chem. Theory Comput. 8, 386–397 (2012)CrossRefGoogle Scholar
  38. 38.
    Xiao L., Cai Q., Ye X., Wang J., Luo R.: Electrostatic forces in the Poisson–Boltzmann systems. J. Chem. Phys. 139, 094106 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Zhao Y., Kwan Y., Che J., Li B., McCammon J.A.: Phase-field approach to implicit solvation of biomolecules with Coulomb-field approximation. J. Chem. Phys. 139, 024111 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Zhou H.X.: Macromolecular electrostatic energy within the nonlinear Poisson–Boltzmann equation. J. Chem. Phys. 100, 3152–3162 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    Zhou S., Cheng L.-T., Dzubiella J., Li B., McCammon J.A.: Variational implicit solvation with Poisson–Boltzmann theory. J. Chem. Theory Comput. 10(4), 1454–1467 (2014)CrossRefGoogle Scholar
  42. 42.
    Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Springer, New York 2002Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNew Mexico State UniversityLas CrucesUSA
  2. 2.Department of MathematicsThe University of AlabamaTuscaloosaUSA
  3. 3.Department of Mathematics and Quantitative Biology Graduate ProgramUniversity of California, San DiegoLa JollaUSA
  4. 4.Department of Mathematics, Department of Physics, and Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations