Archive for Rational Mechanics and Analysis

, Volume 226, Issue 3, pp 1061–1138

# Fractional White-Noise Limit and Paraxial Approximation for Waves in Random Media

Article

## Abstract

This work is devoted to the asymptotic analysis of high frequency wave propagation in random media with long-range dependence. We are interested in two asymptotic regimes, that we investigate simultaneously: the paraxial approximation, where the wave is collimated and propagates along a privileged direction of propagation, and the white-noise limit, where random fluctuations in the background are well approximated in a statistical sense by a fractional white noise. The fractional nature of the fluctuations is reminiscent of the long-range correlations in the underlying random medium. A typical physical setting is laser beam propagation in turbulent atmosphere. Starting from the high frequency wave equation with fast non-Gaussian random oscillations in the velocity field, we derive the fractional Itô–Schrödinger equation, that is, a Schrödinger equation with potential equal to a fractional white noise. The proof involves a fine analysis of the backscattering and of the coupling between the propagating and evanescent modes. Because of the long-range dependence, classical diffusion-approximation theorems for equations with random coefficients do not apply, and we therefore use moment techniques to study the convergence.

## References

1. 1.
Bailly, F.; Clouet, J.F.; Fouque, J.P.: Parabolic and Gaussian white noise approximation for wave propagation in random media. SIAM J. Appl. Math. 56, 1445–1470 (1996)
2. 2.
Bal, G.; Komorowski, T.; Ryzhik, L.: Asymptotics of the phase of the solutions of the random Schrödinger equation. Arch. Rat. Mech. Anal. 100, 613–664 (2011)
3. 3.
Bal, G.; Pinaud, O.: Dynamics of Wave Scintillation in Random Media. CPDE 35, 1176–1235 (2010)
4. 4.
Bal, G., Pinaud, O.: Imaging using transport models for wave-wave correlations. M3AS 21(5), 1071–1093, 2011Google Scholar
5. 5.
Bamberger, A.; Engquist, B.; Halpern, L.; Joly, P.: Parabolic wave equation approximations in heterogeneous media. SIAM J. Appl. Math. 48, 99–128 (1988)
6. 6.
Billingsley, P.: Convergence of Probability Measure, 2nd edn. Wiley InterScience, London (1999)
7. 7.
Borcea, L., Papanicolaou, G., Tsogka, C.: Interferometric array imaging in clutter. Inverse Probl. 21, 1419–1460, 2005Google Scholar
8. 8.
Brinslawn, C.: Kernels of trace class operators. Proc. Am. Math. Soc. 104, 1181–1190 (1988)
9. 9.
Çınlar, E.: Probability and Stochastics, Graduate Texts in Mathematics 261. Springer, New York (2011)Google Scholar
10. 10.
Claerbout, J.F.: Imaging the Earth's Interior. Blackwell Science, Palo Alto (1985)Google Scholar
11. 11.
Dawson, D.A.; Papanicolaou, G.C.: A random wave process. Appl. Math. Optim. 12, 97–114 (1984)
12. 12.
Dolan, S.; Bean, C.; Riollet, B.: The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs. Geophys. J. Int. 132, 489–507 (1998)
13. 13.
Fannjiang, A.C.; Sølna, K.: Propagation and time reversal of wave beams in atmospheric turbulence. SIAM Multiscale Model. Simul. 3, 522–558 (2005)
14. 14.
Fouque, J.-P.; Garnier, J.; Papanicolaou, G.; Sølna, K.: Wave Propagation and Time Reversal in Randomly Layered Media. Springer, New York (2007)
15. 15.
Feldheim, E.: Relations entre les polynomes de Jacobi. Laguerre et Hermite. Acta Math. 75, 117–138 (1942)
16. 16.
Garcia, A., Rademich, E., Rumsey, H.: A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20, 565–578, 1970/1971Google Scholar
17. 17.
Garnier, J.; Sølna, K.: Coupled paraxial wave equations in random media in the white-noise regime. Ann. Appl. Probab. 19, 318–346 (2009)
18. 18.
Garnier, J.; Sølna, K.: Pulse propagation in random media with long-range correlation. SIAM Multiscale Model. Simul. 7, 1302–1324 (2009)
19. 19.
Garnier, J.; Sølna, K.: Scintillation in the white-noise paraxial regime. Commun. Partial Differ. Equ. 39, 626–650 (2014)
20. 20.
Gomez, C.: Radiative transport limit for the random Schrödinger equation with long-range correlations. J. Math. Pures Appl. 98, 295–327 (2012)
21. 21.
C. Gomez.: Wave decoherence for the random Schrödinger equation with long-range correlations. Commun. Math. Phys. 320, 37–71, 2013Google Scholar
22. 22.
Gomez, C.; Pinaud, O.: Asymptotics of a time-splitting scheme for the random Schrödinger equation with long-range correlations. Math. Model. Numer. Anal. 48, 411–431 (2014)
23. 23.
Holm, S.; Sinkus, R.: A unifying fractional wave equation for compressional and shear wave. J. Acoust. Soc. Am. 127, 542–548 (2010)
24. 24.
Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic Press, London (1977)
25. 25.
Marty, R.; Sølna, K.: Acoustic waves in long range random media. SIAM J. Appl. Math. 69, 1065–1083 (2009)
26. 26.
Marty, R.; Sølna, K.: A general framework for waves in random media with long-range correlations. Ann. Appl. Probab. 21, 115–139 (2011)
27. 27.
Maslowsky, B.; Nualart, D.: Evolution equation driven by a fractional Brownian motion. J. Funct. Anal. 202, 277–305 (2003)
28. 28.
Nualart, D.; Răşcanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53, 55–81 (2002)
29. 29.
Pinaud, O.: A note on stochastic Schrödinger equations with fractional multiplicative noise. J. Differ. Equ. 256, 1467–1491 (2014)
30. 30.
Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators, 2nd edn. Academic Press, New York, 1980.Google Scholar
31. 31.
Sidi, C.; Dalaudier, F.: Turbulence in the stratified atmosphere: recent theoretical developments and experimental results. Adv. Space Res. 10, 25–36 (1990)
32. 32.
Strohbehn, J.W.: Laser Beam Propagation in the Atmosphere. Springer, Berlin (1978)
33. 33.
Taqqu, M.S.: Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 287–302 (1975)
34. 34.
Taqqu, M.S.: Law of the iterated logarithm for sums of nonlinear functions of Gaussian variables that exhibit long range dependence. Z. Wahrscheinlichkeistheorie 40, 203–238 (1977)
35. 35.
Tappert, F.D.: The parabolic approximation method in wave propagation and underwater acoustics. Lecture Notes in Physics 70, pp. 224–287. Springer, Berlin, 1977Google Scholar
36. 36.
Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111, 333–374 (1998)