Archive for Rational Mechanics and Analysis

, Volume 226, Issue 3, pp 1061–1138 | Cite as

Fractional White-Noise Limit and Paraxial Approximation for Waves in Random Media

Article

Abstract

This work is devoted to the asymptotic analysis of high frequency wave propagation in random media with long-range dependence. We are interested in two asymptotic regimes, that we investigate simultaneously: the paraxial approximation, where the wave is collimated and propagates along a privileged direction of propagation, and the white-noise limit, where random fluctuations in the background are well approximated in a statistical sense by a fractional white noise. The fractional nature of the fluctuations is reminiscent of the long-range correlations in the underlying random medium. A typical physical setting is laser beam propagation in turbulent atmosphere. Starting from the high frequency wave equation with fast non-Gaussian random oscillations in the velocity field, we derive the fractional Itô–Schrödinger equation, that is, a Schrödinger equation with potential equal to a fractional white noise. The proof involves a fine analysis of the backscattering and of the coupling between the propagating and evanescent modes. Because of the long-range dependence, classical diffusion-approximation theorems for equations with random coefficients do not apply, and we therefore use moment techniques to study the convergence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailly, F.; Clouet, J.F.; Fouque, J.P.: Parabolic and Gaussian white noise approximation for wave propagation in random media. SIAM J. Appl. Math. 56, 1445–1470 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bal, G.; Komorowski, T.; Ryzhik, L.: Asymptotics of the phase of the solutions of the random Schrödinger equation. Arch. Rat. Mech. Anal. 100, 613–664 (2011)CrossRefMATHGoogle Scholar
  3. 3.
    Bal, G.; Pinaud, O.: Dynamics of Wave Scintillation in Random Media. CPDE 35, 1176–1235 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bal, G., Pinaud, O.: Imaging using transport models for wave-wave correlations. M3AS 21(5), 1071–1093, 2011Google Scholar
  5. 5.
    Bamberger, A.; Engquist, B.; Halpern, L.; Joly, P.: Parabolic wave equation approximations in heterogeneous media. SIAM J. Appl. Math. 48, 99–128 (1988)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Billingsley, P.: Convergence of Probability Measure, 2nd edn. Wiley InterScience, London (1999)CrossRefMATHGoogle Scholar
  7. 7.
    Borcea, L., Papanicolaou, G., Tsogka, C.: Interferometric array imaging in clutter. Inverse Probl. 21, 1419–1460, 2005Google Scholar
  8. 8.
    Brinslawn, C.: Kernels of trace class operators. Proc. Am. Math. Soc. 104, 1181–1190 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Çınlar, E.: Probability and Stochastics, Graduate Texts in Mathematics 261. Springer, New York (2011)Google Scholar
  10. 10.
    Claerbout, J.F.: Imaging the Earth's Interior. Blackwell Science, Palo Alto (1985)Google Scholar
  11. 11.
    Dawson, D.A.; Papanicolaou, G.C.: A random wave process. Appl. Math. Optim. 12, 97–114 (1984)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dolan, S.; Bean, C.; Riollet, B.: The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs. Geophys. J. Int. 132, 489–507 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Fannjiang, A.C.; Sølna, K.: Propagation and time reversal of wave beams in atmospheric turbulence. SIAM Multiscale Model. Simul. 3, 522–558 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fouque, J.-P.; Garnier, J.; Papanicolaou, G.; Sølna, K.: Wave Propagation and Time Reversal in Randomly Layered Media. Springer, New York (2007)MATHGoogle Scholar
  15. 15.
    Feldheim, E.: Relations entre les polynomes de Jacobi. Laguerre et Hermite. Acta Math. 75, 117–138 (1942)CrossRefMATHGoogle Scholar
  16. 16.
    Garcia, A., Rademich, E., Rumsey, H.: A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20, 565–578, 1970/1971Google Scholar
  17. 17.
    Garnier, J.; Sølna, K.: Coupled paraxial wave equations in random media in the white-noise regime. Ann. Appl. Probab. 19, 318–346 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Garnier, J.; Sølna, K.: Pulse propagation in random media with long-range correlation. SIAM Multiscale Model. Simul. 7, 1302–1324 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Garnier, J.; Sølna, K.: Scintillation in the white-noise paraxial regime. Commun. Partial Differ. Equ. 39, 626–650 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gomez, C.: Radiative transport limit for the random Schrödinger equation with long-range correlations. J. Math. Pures Appl. 98, 295–327 (2012)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    C. Gomez.: Wave decoherence for the random Schrödinger equation with long-range correlations. Commun. Math. Phys. 320, 37–71, 2013Google Scholar
  22. 22.
    Gomez, C.; Pinaud, O.: Asymptotics of a time-splitting scheme for the random Schrödinger equation with long-range correlations. Math. Model. Numer. Anal. 48, 411–431 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Holm, S.; Sinkus, R.: A unifying fractional wave equation for compressional and shear wave. J. Acoust. Soc. Am. 127, 542–548 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic Press, London (1977)MATHGoogle Scholar
  25. 25.
    Marty, R.; Sølna, K.: Acoustic waves in long range random media. SIAM J. Appl. Math. 69, 1065–1083 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Marty, R.; Sølna, K.: A general framework for waves in random media with long-range correlations. Ann. Appl. Probab. 21, 115–139 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Maslowsky, B.; Nualart, D.: Evolution equation driven by a fractional Brownian motion. J. Funct. Anal. 202, 277–305 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Nualart, D.; Răşcanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53, 55–81 (2002)MathSciNetMATHGoogle Scholar
  29. 29.
    Pinaud, O.: A note on stochastic Schrödinger equations with fractional multiplicative noise. J. Differ. Equ. 256, 1467–1491 (2014)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators, 2nd edn. Academic Press, New York, 1980.Google Scholar
  31. 31.
    Sidi, C.; Dalaudier, F.: Turbulence in the stratified atmosphere: recent theoretical developments and experimental results. Adv. Space Res. 10, 25–36 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    Strohbehn, J.W.: Laser Beam Propagation in the Atmosphere. Springer, Berlin (1978)CrossRefGoogle Scholar
  33. 33.
    Taqqu, M.S.: Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 287–302 (1975)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Taqqu, M.S.: Law of the iterated logarithm for sums of nonlinear functions of Gaussian variables that exhibit long range dependence. Z. Wahrscheinlichkeistheorie 40, 203–238 (1977)CrossRefMATHGoogle Scholar
  35. 35.
    Tappert, F.D.: The parabolic approximation method in wave propagation and underwater acoustics. Lecture Notes in Physics 70, pp. 224–287. Springer, Berlin, 1977Google Scholar
  36. 36.
    Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111, 333–374 (1998)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, Centrale Marseille, I2MMarseilleFrance
  2. 2.Department of MathematicsColorado State UniversityFort CollinsUSA

Personalised recommendations