Archive for Rational Mechanics and Analysis

, Volume 224, Issue 2, pp 743–816 | Cite as

Local Invertibility in Sobolev Spaces with Applications to Nematic Elastomers and Magnetoelasticity

  • Marco Barchiesi
  • Duvan Henao
  • Carlos Mora-Corral


We define a class of deformations in \({W^{1,p}(\Omega,\mathbb{R}^n)}\), \({p > n-1}\), with a positive Jacobian, that do not exhibit cavitation. We characterize that class in terms of the non-negativity of the topological degree and the equality Det = det (that the distributional determinant coincides with the pointwise determinant of the gradient). Maps in this class are shown to satisfy a property of weak monotonicity, and, as a consequence, they enjoy an extra degree of regularity. We also prove that these deformations are locally invertible; moreover, the neighbourhood of invertibility is stable along a weak convergent sequence in \({W^{1,p}}\), and the sequence of local inverses converges to the local inverse. We use those features to show weak lower semicontinuity of functionals defined in the deformed configuration and functionals involving composition of maps. We apply those results to prove the existence of minimizers in some models for nematic elastomers and magnetoelasticity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agostiniani V., DeSimone A.: Γ-convergence of energies for nematic elastomers in the small strain limit. Contin. Mech. Thermodyn., 23, 257–274 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York, 2000Google Scholar
  3. 3.
    Ansini N., Garroni A.: Γ-Convergence of functionals on divergence-free fields. ESAIM Control Optim. Calc. Var., 13, 809–828 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Astala, K., Iwaniec, T., Martin, G.: Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series, Vol. 48. Princeton University Press, Princeton, NJ, 2009Google Scholar
  5. 5.
    Ball, J. M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium (Edinburgh, 1976), Vol. I, Pitman, London, pp. 187–241. Res. Notes in Math., No. 17, 1977Google Scholar
  6. 6.
    Ball J. M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63, 337–403 (1977)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ball J. M.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinburgh Sect. A, 88, 315–328 (1981)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ball J. M., Currie J. C., Olver P. J.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal.: 41, 135–174 (1981)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ball J. M., Majumdar A.: Nematic liquid crystals: from Maier-Saupe to a continuum theory. Mol. Cryst. Liq. Cryst., 525, 1–11 (2009)CrossRefGoogle Scholar
  10. 10.
    Ball J. M., Murat F.: Remarks on Chacon’s biting lemma. Proc. Am. Math. Soc., 107, 655–663 (1989)MathSciNetMATHGoogle Scholar
  11. 11.
    Barchiesi M., DeSimone A.: Frank energy for nematic elastomers: a nonlinear model. ESAIM Control Optim. Calc. Var., 21, 372–377 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bourbaki, N.: Elements of Mathematics. General Topology. Part 1. Hermann, Paris, 1966Google Scholar
  13. 13.
    Brooks J. K., Chacon R. V.: Continuity and compactness of measures. Adv. Math., 37, 16–26 (1980)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Calderer, M. C., Garavito Garzón, C. A., Yan, B.: A Landau-de Gennes theory of liquid crystal elastomers. Discrete Contin. Dyn. Syst. Ser. S, 8, 283–302, 2015Google Scholar
  15. 15.
    Ciarlet P. G., Nečas J.: Injectivity and self-contact in nonlinear elasticity. Arch. Rational Mech. Anal., 97, 171–188 (1987)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Conti, S., De Lellis, C.: Some remarks on the theory of elasticity for compressible Neohookean materials. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (5), 2, 521–549, 2003Google Scholar
  17. 17.
    Dacorogna, B.: Direct methods in the calculus of variations. Applied Mathematical Sciences, Vol. 78, 2nd Edn. Springer, New York, 2008Google Scholar
  18. 18.
    Dacorogna B., Fonseca I.: A minimization problem involving variation of the domain. Commun. Pure Appl. Math., 45, 871–897 (1992)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    De Gennes, P., Prost, J. J.: The Physics of Liquid Crystals. Oxford University Press, Oxford, 1993Google Scholar
  20. 20.
    De Lellis, C., Ghiraldin, F.: An extension of the identity Det = det. C. R. Math. Acad. Sci. Paris, 348, 973–976, 2010Google Scholar
  21. 21.
    Deimling K.: Nonlinear Functional Analysis. Springer, Berlin (1985)CrossRefMATHGoogle Scholar
  22. 22.
    Deny J., Lions J.L.: Les espaces du type de Beppo Levi. Ann. Inst. Fourier Grenoble, 5, 305–370 (1954)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    DeSimone A.: Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal., 125, 99–143 (1993)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    DeSimone A., Dolzmann G.: Existence of minimizers for a variational problem in two-dimensional nonlinear magnetoelasticity. Arch. Rational Mech. Anal., 144, 107–120 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    DeSimone A., James R. D.: A constrained theory of magnetoelasticity. J. Mech. Phys. Solids, 50, 283–320 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    DeSimone A., Teresi L.: Elastic energies for nematic elastomers. Eur. Phys. J. E, 29, 191–204 (2009)CrossRefGoogle Scholar
  27. 27.
    Dieudonné, J.: Treatise on Analysis, Vol. III, Academic Press, New York, 1972Google Scholar
  28. 28.
    D’Onofrio L., Hencl S., Malý J., Schiattarella R.: Note on Lusin (N) condition and the distributional determinant. J. Math. Anal. Appl., 439, 171–182 (2016)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL, 1992Google Scholar
  30. 30.
    Federer H.: Geometric Measure Theory. Springer, New York (1969)MATHGoogle Scholar
  31. 31.
    Fonseca I., Gangbo W.: Degree Theory in Analysis and Applications. Oxford University Press, New York (1995)MATHGoogle Scholar
  32. 32.
    Fonseca I., Gangbo W.: Local invertibility of Sobolev functions. SIAM J. Math. Anal., 26, 280–304 (1995)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Fonseca, I., Leoni, G.: Modern methods in the calculus of variations: \({L^p}\) spaces. Springer Monographs in Mathematics. Springer, New York, 2007Google Scholar
  34. 34.
    Fonseca, I., Müller, S.: \({\mathcal{A}}\)-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal., 30, 1355–1390, 1999Google Scholar
  35. 35.
    Fonseca I., Parry G.: Equilibrium configurations of defective crystals. Arch. Rational Mech. Anal., 120, 245–283 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Fonseca I., Parry G.: On a class of invariant functionals. Proc. R. Soc. Lond. Ser. A, 436, 317–329 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Gantmacher, F. R.: The Theory of Matrices, Vol. 1. Chelsea Publishing Co., New York, 1959Google Scholar
  38. 38.
    Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations. I. Springer, Berlin, 1998Google Scholar
  39. 39.
    Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations. II. Springer, Berlin, 1998Google Scholar
  40. 40.
    Goffman C., Ziemer W. P.: Higher dimensional mappings for which the area formula holds. Ann. Math. (2) 92, 482–488 (1970)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Hajlasz P., Malý J.: Approximation in Sobolev spaces of nonlinear expressions involving the gradient. Ark. Mat., 40, 245–274 (2002)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Henao D., Mora-Corral C.: Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Rational Mech. Anal., 197, 619–655 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Henao D., Mora-Corral C.: Fracture surfaces and the regularity of inverses for BV deformations. Arch. Rational Mech. Anal., 201, 575–629 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Henao D., Mora-Corral C.: Lusin’s condition and the distributional determinant for deformations with finite energy. Adv. Calc. Var., 5, 355–409 (2012)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Henao D., Mora-Corral C.: Regularity of inverses of Sobolev deformations with finite surface energy. J. Funct. Anal., 268, 2356–2378 (2015)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Henao D., Mora-Corral C., Xu X.: Γ-convergence approximation of fracture and cavitation in nonlinear elasticity. Arch. Rational Mech. Anal., 216, 813–879 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Hencl, S., Koskela, P.: Lectures on mappings of finite distortion. Lecture Notes in Mathematics, Vol. 2096. Springer, Cham, 2014Google Scholar
  48. 48.
    Iwaniec T., Onninen J.: Hyperelastic deformations of smallest total energy. Arch. Rational Mech. Anal., 194, 927–986 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    James R. D., Kinderlehrer D.: Frustration in ferromagnetic materials. Contin. Mech. Thermodyn., 2, 215–239 (1990)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    James, R. D., Kinderlehrer, D.: Theory of magnetostriction with application to \({\rm Tb}_x{\rm Dy}_{1-x}{\rm Fe}_2\). Philos. Mag. B, 68, 237–274, 1993Google Scholar
  51. 51.
    Kovalev L. V., Onninen J.: On invertibility of Sobolev mappings. J. Reine Angew. Math., 656, 1–16 (2011)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Kovalev L. V., Onninen J., Rajala K.: Invertibility of Sobolev mappings under minimal hypotheses. Ann. Inst. Henri Poincaré Anal. Non Linéaire, 27, 517–528 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Kružík, M., Stefanelli, U., Zeman, J.: Existence results for incompressible magnetoelasticity. Discrete Contin. Dyn. Syst., 35, 2615–2623, 2015Google Scholar
  54. 54.
    Llavona, J. G.: Approximation of continuously differentiable functions. North-Holland Mathematics Studies, Vol. 130. North-Holland Publishing Co., Amsterdam, 1986Google Scholar
  55. 55.
    Majumdar A.: Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory. Eur. J. Appl. Math., 21, 181–203 (2010)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Manfredi J. J.: Weakly monotone functions. J. Geom. Anal., 4, 393–402 (1994)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Marcus M., Mizel V. J.: Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems. Bull. Am. Math. Soc., 79, 790–795 (1973)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Maz’ya, V., Sobolev spaces with applications to elliptic partial differential equations. Grundlehren der Mathematischen Wissenschaften, Vol. 342, 2nd Edn. Springer, Heidelberg, 2011Google Scholar
  59. 59.
    Müller S.: Weak continuity of determinants and nonlinear elasticity. C. R. Acad. Sci. Paris Sér. I Math., 307, 501–506 (1988)MathSciNetMATHGoogle Scholar
  60. 60.
    Müller, S.: Det = det. A remark on the distributional determinant. C. R. Acad. Sci. Paris Sér. I Math., 311, 13–17, 1990Google Scholar
  61. 61.
    Müller S., Spector S. J.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal., 131, 1–66 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Müller S., Spector S. J., Tang Q.: Invertibility and a topological property of Sobolev maps. SIAM J. Math. Anal., 27, 959–976 (1996)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Müller S., Tang Q., Yan B. S.: On a new class of elastic deformations not allowing for cavitation. Ann. Inst. Henri Poincaré Anal. Non Linéaire, 11, 217–243 (1994)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Murat F.: Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8, 69–102 (1981)MathSciNetMATHGoogle Scholar
  65. 65.
    Palombaro, M.; Rank-(n−1) convexity and quasiconvexity for divergence free fields. Adv. Calc. Var., 3, 279–285, 2010Google Scholar
  66. 66.
    Palombaro M., Smyshlyaev V. P.: Relaxation of three solenoidal wells and characterization of extremal three-phase H-measures. Arch. Rational Mech. Anal., 194, 775–822 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Ponomarev, S. P.: Property N of homeomorphisms of the class \({{W}^{1,p}}\). Sib. Math. J., 28, 291–298, 1987Google Scholar
  68. 68.
    Reshetnyak, Y. G.: Space mappings with bounded distortion. Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, Vol. 73, 1989Google Scholar
  69. 69.
    Rybka P., Luskin M.: Existence of energy minimizers for magnetostrictive materials. SIAM J. Math. Anal., 36, 2004–2019 (2005)MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Šverák, V.: Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal., 100, 105–127, 1988Google Scholar
  71. 71.
    Tang Q.: Almost-everywhere injectivity in nonlinear elasticity. Proc. R. Soc. Edinb. Sect. A, 109, 79–95 (1988)MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Vodop’yanov S.K.: Topological and geometrical properties of mappings with summable Jacobian in Sobolev classes. I. Sib. Math. J., 41, 19–39 (2000)MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Vodop’yanov, S. K., Gol’dšteĭn, V. M.: Quasiconformal mappings, and spaces of functions with first generalized derivatives. Sib. Math. J., 17, 515–531, 715, 1976Google Scholar
  74. 74.
    Warner M., Terentjev E.: Liquid Crystal Elastomers. Clarendon Press, Oxford (2007)MATHGoogle Scholar
  75. 75.
    Ziemer W. P.: Weakly Differentiable Functions. Springer, New York (1989)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Dipartimento di Matematica ed ApplicazioniUniversità degli Studi di Napoli “Federico II”NapoliItaly
  2. 2.Faculty of MathematicsPontificia Universidad Católica de ChileMaculChile
  3. 3.Faculty of SciencesUniversidad Autónoma de MadridMadridSpain

Personalised recommendations