Archive for Rational Mechanics and Analysis

, Volume 223, Issue 2, pp 693–736 | Cite as

Phase Field Models for Thin Elastic Structures with Topological Constraint

  • Patrick W. Dondl
  • Antoine Lemenant
  • Stephan Wojtowytsch
Article

Abstract

This article is concerned with the problem of minimising the Willmore energy in the class of connected surfaces with prescribed area which are confined to a small container. We propose a phase field approximation based on De Giorgi’s diffuse Willmore functional to this variational problem. Our main contribution is a penalisation term which ensures connectedness in the sharp interface limit. The penalisation of disconnectedness is based on a geodesic distance chosen to be small between two points that lie on the same connected component of the transition layer of the phase field. We prove that in two dimensions, sequences of phase fields with uniformly bounded diffuse Willmore energy and diffuse area converge uniformly to the zeros of a double-well potential away from the support of a limiting measure. In three dimensions, we show that they converge \({\mathcal{H}^1}\)-almost everywhere on curves. This enables us to show \({\Gamma}\)-convergence to a sharp interface problem that only allows for connected structures. The results also imply Hausdorff convergence of the level sets in two dimensions and a similar result in three dimensions. Furthermore, we present numerical evidence of the effectiveness of our model. The implementation relies on a coupling of Dijkstra’s algorithm in order to compute the topological penalty to a finite element approach for the Willmore term.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allard W.K.: On the first variation of a varifold. Ann. Math. 95(2), 417–491 (1972)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Benmansour F., Carlier G., Peyre G., Santambrogio F.: Derivatives with respect to metrics and applications: subgradient marching algorithm. Numerische Mathematik 116(3), 357–381 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bellettini G.: Variational approximation of functionals with curvatures and related properties. J. Convex Anal. 4(1), 91–108 (1997)MathSciNetMATHGoogle Scholar
  4. 4.
    Barrett J.W., Garcke H., Nürnberg R.: On the parametric finite element approximation of evolving hypersurfaces in \({\mathbb{R}^3}\). J. Comput. Phys. 227(9), 4281–4307 (2008)ADSMathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bauer M., Kuwert E.: Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. 2003(10), 553–576 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Biben T., Kassner K., Misbah C.: Phase-field approach to three-dimensional vesicle dynamics. Phys. Rev. E 72(4), 041921 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Bonnivard M., Lemenant A., Santambrogio F.: Approximation of length minimization problems among compact connected sets. SIAM J. Math. Anal. 47(2), 1489–1529 (2015)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bellettini G., Mugnai L.: Approximation of the Helfrich’s functional via diffuse interfaces. SIAM J. Math. Anal. 42(6), 2402–2433 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bretin, E., Masnou, S., Oudet, E.: Phase-field approximations of the Willmore functional and flow. Numerische Mathematik, 1–57 (2013)Google Scholar
  10. 10.
    Bellettini, G., Paolini, M.: Approssimazione variazionale di funzionali con curvatura. Seminario di Analisi Matematica, Dipartimento di Matematica dell’Università di Bologna., (1993)Google Scholar
  11. 11.
    Balzani N., Rumpf M.: A nested variational time discretization for parametric Willmore flow. Interfaces Free Bound. 14(4), 431–454 (2012)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Blaschke, W., Thomsen, G.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. Band I. Elementare Differentialgeometrie, vol. 29 of VorlesunGrundlehren der mathematischen Wissenschaften, 3rd edn. Springer, New York, 1929Google Scholar
  13. 13.
    Canham P.B.: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26(1), 61–81 (1970)CrossRefGoogle Scholar
  14. 14.
    Caffarelli L.A., Cordoba A.: Uniform convergence of a singular perturbation problem. Commun. Pure Appl. Math. 48(1), 1–12 (1995)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Caffarelli L.A., Cordoba A.: Phase transitions: Uniform regularity of the intermediate layers. J. Reine Angew. Math. 593(593), 209–235 (2006)MathSciNetMATHGoogle Scholar
  16. 16.
    Campelo F., Hernández-Machado A.: Dynamic model and stationary shapes of fluid vesicles. Eur. Phys. J. E, 20(1), 37–45 (2006)CrossRefGoogle Scholar
  17. 17.
    Choksi R., Veneroni M.: Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case. Calc. Var. Partial Differ. Equations 48(3-4), 337–366 (2013)MathSciNetMATHGoogle Scholar
  18. 18.
    Dziuk G., Elliott C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Delladio, S.: Special generalized gauss graphs and their application to minimization of functionals involving curvatures. J. fur die Reine und Angewandte Math., 17–44 (1997)Google Scholar
  20. 20.
    De Giorgi, E.: Some remarks on \({\Gamma}\)-convergence and least squares method. In: Composite media and homogenization theory (Trieste, 1990), pp. 135–142. Birkhäuser Boston, Boston, MA, 1991Google Scholar
  21. 21.
    Deckelnick, K., Grunau, H.-C., Röger, M.: Minimising a relaxed Willmore functional for graphs subject to boundary conditions. arXiv:1503.01275, 2015
  22. 22.
    Du Q., Liu C., Ryham R., Wang X.: A phase field formulation of the Willmore problem. Nonlinearity 18(3), 1249–1267 (2005)ADSMathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Du Q., Liu C., Ryham R., Wang X.: Diffuse interface energies capturing the Euler number: relaxation and renormalization. Commun. Math. Sci. 5(1), 233–242 (2007)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Du Q., Liu C., Ryham R., Wang X.: Energetic variational approaches in modeling vesicle and fluid interactions. Phys. D 238(9-10), 923–930 (2009)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Du Q., Liu C., Wang X.: Retrieving topological information for phase field models. SIAM J. Appl. Math. 65(6), 1913–1932 (2005)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Du Q., Liu C., Wang X.: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212(2), 757–777 (2006)ADSMathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Dondl P.W., Mugnai L., Rögerm M.: Confined elastic curves. SIAM J. Appl. Math. 71(6), 2205–2226 (2011)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Dondl P.W., Mugnai L., Rögerm M.: A phase field model for the optimization of the Willmore energy in the class of connected surfaces. SIAM J. Math. Anal. 46(2), 1610–1632 (2014)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    del Pino M., Kowalczyk M., Pacard F., Wei J.: Multiple-end solutions to the Allen–Cahn equation in \({\mathbb{R}^2}\). J. Funct. Anal. 258(2), 458–503 (2010)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Droske M., Rumpf M.: A level set formulation for Willmore flow. Interfaces Free Bound. 6(3), 361–378 (2004)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Du Q.: Phase field calculus, curvature-dependent energies, and vesicle membranes. Phil. Mag. 91(1), 165–181 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Du Q., Wang X.: Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations. Int. J. Numer. Anal. Model. 4(3-4), 441–459 (2007)MathSciNetMATHGoogle Scholar
  33. 33.
    Dondl, P.W., Wojtowytsch, S.: Numerical treatment of a phase field model for elastic membranes with topological constraint, 2016 (in preparation)Google Scholar
  34. 34.
    Dziuk G.: Computational parametric Willmore flow. Numerische Math. 111(1), 55–80 (2008)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992Google Scholar
  36. 36.
    Esedoglu S., Rätz A., Röger M.: Colliding interfaces in old and new diffuse-interface approximations of Willmore-flow. Commun. Math. Sci. 12(1), 125–147 (2014)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band, vol. 153. Springer, New York, 1969Google Scholar
  38. 38.
    Friesecke G., James R.D., Müller S.: Rigorous derivation of nonlinear plate theory and geometric rigidity. Comptes Rendus Mathematique 334(2), 173–178 (2002)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Friesecke G., James R.D., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Friesecke G., James R.D., Mora M.G., Müller S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by gamma-convergence. Comptes Rendus Math 336(8), 697–702 (2003)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Franken M., Rumpf M., Wirth B.: A phase field based PDE constrained optimization approach to time dicrete Willmore flow. Int. J. Numer. Anal. Model. 10(1), 116–138 (2013)MathSciNetMATHGoogle Scholar
  42. 42.
    Grosse-Brauckmann K.: New surfaces of constant mean curvature. Math. Zeitschrift 214(1), 527–565 (1993)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Germain, S.: Recherches sur la theorie des surfaces elastiques.-Paris, V. Courcier. V. Courcier, 1821Google Scholar
  44. 44.
    Gilbarg D.: Trudinger N.S.: Elliptic partial differential equations of second order. Springer, New York (2001)Google Scholar
  45. 45.
    Helfrich W.: Elastic properties of lipid bilayers—theory and possible experiments. Zeitschrift für Naturforschung C 28(11), 693–703 (1973)Google Scholar
  46. 46.
    Hutchinson J.E., Tonegawa Y.: Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differ. Equations 10(1), 49–84 (2000)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Hutchinson J.E.: Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35(1), 45–71 (1986)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Kuwert E., Li Y., Schätzle R.: The large genus limit of the infimum of the Willmore energy. Am. J. Math. 132(1), 37–51 (2010)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Keller L.G.A., Mondino A., Rivière T.: Embedded surfaces of arbitrary genus minimizing the Willmore energy under isoperimetric constraint. Arch. Ration. Mech. Anal. 212(2), 645–682 (2014)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Krantz S.G., Parks H.R.: Geometric integration theory. Springer Science & Business Media, New York (2008)MATHCrossRefGoogle Scholar
  51. 51.
    Kuwert E., Schätzle R.: The Willmore flow with small initial energy. J. Differ. Geom. 57(3), 409–441 (2001)MathSciNetMATHGoogle Scholar
  52. 52.
    Kuwert E., Schätzle R.: Gradient flow for the Willmore functional. Commun. Anal. Geometry 10(2), 307–339 (2002)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Kuwert, E., Schätzle, R.: The Willmore functional. In: Topics in modern regularity theory, pp. 1–115. Springer, New York, 2012Google Scholar
  54. 54.
    Link, F.: Gradient flow for the Willmore functional in Riemannian manifolds of bounded geometry, 2013. arXiv:1308.6055
  55. 55.
    Lamm, T., Metzger, J.: Small surfaces of Willmore type in Riemannian manifolds. Int. Math. Res. Not. IMRN (19), 3786–3813 (2010)Google Scholar
  56. 56.
    Lamm T., Metzger J., Schulze F.: Foliations of asymptotically flat manifolds by surfaces of Willmore type. Math. Ann. 350(1), 1–78 (2011)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Lussardi L., Peletier M.A., Röger M.: Variational analysis of a mesoscale model for bilayer membranes. J. Fixed Point Theory Appl. 15(1), 217–240 (2014)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Li P., Yau S.-T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291 (1982)ADSMathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Marques F., Neves A.: Min-max theory and the Willmore conjecture. Ann. Math. 179(2), 683–782 (2014)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Modica L.: A gradient bound and a Liouville theorem for nonlinear Poisson equations. Commun. Pure Appl. Math. 38(5), 679–684 (1985)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Mondino A., Rivière T.: Willmore spheres in compact Riemannian manifolds. Adv. Math. 232, 608–676 (2013)MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Müller S., Röger M.: Confined structures of least bending energy. J. Differ. Geometry 97(1), 109–139 (2014)MathSciNetMATHGoogle Scholar
  64. 64.
    Mayer U.F., Simonett G.: A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the willmore flow. Interfaces Free Boundaries 4(1), 89–109 (2002)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Mayer, U.F., Simonett, G.: Self-intersections for Willmore flow. In: Evolution equations: applications to physics, industry, life sciences and economics, pp. 341–348. Springer, New York, 2003Google Scholar
  66. 66.
    Nagase Y., Tonegawa Y.: A singular perturbation problem with integral curvature bound. Hiroshima Math. J. 37(3), 455–489 (2007)MathSciNetMATHGoogle Scholar
  67. 67.
    Peletier M.A., Röger M.: Partial localization, lipid bilayers, and the elastica functional. Arch. Ration. Mech. Anal. 193(3), 475–537 (2009)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Pinkall U., Sterling I.: Willmore surfaces. Math. Intell. 9(2), 38–43 (1987)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Riviere T.: Variational principles for immersed surfaces with L 2-bounded second fundamental form. J. für die reine und angewandte Mathematik (Crelles Journal) 2014(695), 41–98 (2014)MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Röger M., Schätzle R.: On a modified conjecture of De Giorgi. Math. Z. 254(4), 675–714 (2006)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Schygulla J.: Willmore minimizers with prescribed isoperimetric ratio. Arch. Ration. Mech. Anal. 203(3), 901–941 (2012)MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Simon, L.: Lectures on geometric measure theory. Australian National University Centre for Mathematical Analysis, vol. 3. Canberra, 1983Google Scholar
  73. 73.
    Simon L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–326 (1993)MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Simonett G.: The Willmore flow near spheres. Differ. Integral Equations 14(8), 1005–1014 (2001)MathSciNetMATHGoogle Scholar
  75. 75.
    Thomsen G.: über konforme Geometrie I: Grundlagen der konformen Flächentheorie. Abh. Math. Sem. Hamburg 3, 31–56 (1923)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Topping P.: Mean curvature flow and geometric inequalities. J. Reine Angew. Math. 503, 47–61 (1998)MathSciNetMATHGoogle Scholar
  77. 77.
    Wang X., Du Q.: Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56(3), 347–371 (2007)MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Willmore T.J.: Note on embedded surfaces. An. Sti. Univ.“Al. I. Cuza” Iasi Sect. I a Mat.(NS) B 11, 493–496 (1965)MathSciNetMATHGoogle Scholar
  79. 79.
    Willmore T.J.: Mean curvature of Riemannian immersions. J. Lond. Math. Soc. 2(2), 307–310 (1971)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Willmore, T.J.: A survey on Willmore immersions. Geom. Topol. Submanifolds IV (Leuven 1991), 11–16 (1992)Google Scholar
  81. 81.
    Willmore T.J.: Riemannian geometry. Clarendon Press, Oxford (1993)MATHGoogle Scholar
  82. 82.
    Willmore T.J.: Surfaces in conformal geometry. Ann. Global Anal. Geom. 18(3-4), 255–264 (2000)MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Wojtowytsch, S.: Helfrich’s energy and constrained minimisation, 2016. arXiv:1608.02823 [math.DG]

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Patrick W. Dondl
    • 1
  • Antoine Lemenant
    • 2
  • Stephan Wojtowytsch
    • 3
  1. 1.Abteilung für Angewandte MathematikAlbert-Ludwigs-Universität FreiburgFreiburg i. Br.Germany
  2. 2.Université Paris Diderot, Paris 7, U.F.R de Mathématiques, Bâtiment Sophie GermainParis Cedex 13France
  3. 3.Department of Mathematical SciencesDurham UniversityDurhamUK

Personalised recommendations