Advertisement

Archive for Rational Mechanics and Analysis

, Volume 223, Issue 1, pp 57–94 | Cite as

The Schrödinger Equation in the Mean-Field and Semiclassical Regime

  • François GolseEmail author
  • Thierry Paul
Article

Abstract

In this paper, we establish (1) the classical limit of the Hartree equation leading to the Vlasov equation, (2) the classical limit of the N-body linear Schrödinger equation uniformly in N leading to the N-body Liouville equation of classical mechanics and (3) the simultaneous mean-field and classical limit of the N-body linear Schrödinger equation leading to the Vlasov equation. In all these limits, we assume that the gradient of the interaction potential is Lipschitz continuous. All our results are formulated as estimates involving a quantum analogue of the Monge–Kantorovich distance of exponent 2 adapted to the classical limit, reminiscent of, but different from the one defined in Golse et al. [Commun Math Phys 343:165–205, 2016]. As a by-product, we also provide bounds on the quadratic Monge–Kantorovich distance between the classical densities and the Husimi functions of the quantum density matrices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Athanassoulis, A., Paul, T., Pezzotti, F., Pulvirenti, M.: Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Rend. Lincei: Mat. e Appl. 22, 525–552 (2011)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Athanassoulis, A., Paul, T., Pezzotti, F., Pulvirenti, M.: Semiclassical propagation of coherent states for the Hartree equation. Ann. H. Poincaré 12, 1613–1634 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bardos, C., Erdös, L., Golse, F., Mauser, N., Yau, H.-T.: Derivation of the Schrödinger–Poisson equation from the quantum N-body problem. C. R. Acad. Sci. Paris, Sér. I 334, 515–520 (2002)Google Scholar
  4. 4.
    Bardos, C., Golse, F., Mauser, N.: Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 7, 275–294 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Benedikter, N., Porta, M., Saffirio, C., Schlein, B.: From the Hartree dynamics to the Vlasov equation. Arch. Ration. Mech. Anal. 221, 273–334 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Berezin, F.A., Shubin, M.A.: The Schrödinger equation. Translated from the 1983 Russian edition. Mathematics and its Applications (Soviet Series), Vol. 66. Kluwer Academic Publishers Group, Dordrecht, 1991Google Scholar
  7. 7.
    Bove, A., DaPrato, G., Fano, G.: An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction. Commun. Math. Phys. 37, 183–191 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dobrushin, R.: Vlasov equations. Funct. Anal. Appl. 13, 115–123 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Golse, F., Mouhot, C., Paul, T.: On the mean-field and classical limits of quantum mechanics. Commun. Math. Phys. 343, 165–205 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Graffi, S., Martinez, A., Pulvirenti, M.: Mean-field approximation of quantum systems and classical limit. Math. Models Methods Appl. Sci. 13, 59–73 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hauray, M., Jabin, P.-E.: Particle approximations of Vlasov equations with singular forces. Ann. Sci. Ecol. Norm. Sup. 48, 891–940 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kato, T.: Perturbation Theory for Linear Operators. Reprint of the 1980 edition. Springer, Berlin, 1995Google Scholar
  13. 13.
    Lax, P.D., Richtmeyer, R.: Survey of the stability of linear finite difference equations. Commun. Pure Appl. Math. 9, 267–293 (1956)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lazarovici, D.: The Vlasov–Poisson dynamics as the mean-field limit of rigid charges (preprint). arXiv:1502.07047
  15. 15.
    Lazarovici, D., Pickl, P.: A mean-field limit for the Vlasov–Poisson system (preprint). arXiv:1502.04608
  16. 16.
    Lerner, N.: Some facts about the Wick calculus. Pseudodifferential Operators. Lecture Notes in Mathematics, 1949. Springer, Berlin, 135–174, 2008Google Scholar
  17. 17.
    Lerner, N.: Metrics on the Phase Space and Non-selfadjoint Pseudo-Differential Operators. Birkhäuser, Basel (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lions, P.-L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9, 553–618 (1993)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Loeper, G.: Uniqueness of the solution to the Vlasov–Poisson system with bounded density. J. Math. Pures Appl. 86, 68–79 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Narnhofer, H., Sewell, G.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79, 9–24 (1981)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Pezzoti, F., Pulvirenti, M.: Mean-field limit and semiclassical expansion of a quantum particle system. Ann. Henri Poincaré 10, 145–187 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Simon, B.: The classical limit of quantum partition functions. Commun. Math. Phys. 71, 247–276 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3, 445–455 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2003)CrossRefzbMATHGoogle Scholar
  25. 25.
    Villani, C.: Optimal Transport. Old and New. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CMLS, École polytechnique & CNRS, Université Paris-SaclayPalaiseauFrance

Personalised recommendations