Archive for Rational Mechanics and Analysis

, Volume 222, Issue 1, pp 343–391 | Cite as

Criteria on Contractions for Entropic Discontinuities of Systems of Conservation Laws

  • Moon-Jin KangEmail author
  • Alexis F. Vasseur


We study the contraction properties (up to shift) for admissible Rankine–Hugoniot discontinuities of \({n\times n}\) systems of conservation laws endowed with a convex entropy. We first generalize the criterion developed in (Serre and Vasseur, J l’Ecole Polytech 1, 2014), using the spatially inhomogeneous pseudo-distance introduced in (Vasseur, Contemp Math AMS, 2013). Our generalized criterion guarantees the contraction property for extremal shocks of a large class of systems, including the Euler system. Moreover, we introduce necessary conditions for contraction, specifically targeted for intermediate shocks. As an application, we show that intermediate shocks of the two-dimensional isentropic magnetohydrodynamics do not verify any of our contraction properties. We also investigate the contraction properties, for contact discontinuities of the Euler system, for a certain range of contraction weights. None of the results involve any smallness condition on the initial perturbation or on the size of the shock.


Relative Entropy Entropy Solution Euler System Contraction Property Intermediate Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adimurthi, Goshal, Sh.S., Veerappa Gowda, G.D.: \({L^p}\) stability for entropy solutions of scalar conservation laws with strict convex flux. J. Differ. Equ. 256(10), 3395–3416 (2014)Google Scholar
  2. 2.
    Bardos C., Golse F., Levermore C.D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63(1–2), 323–344 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bardos C., Golse F., Levermore C.D.: Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46(5), 667–753 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barker, B., Freistühler, H., Zumbrun, K.: Convex entropy, hopf bifurcation, and viscous and inviscid shock stability. Arch. Ration. Mech. Anal. 217(1), 309–372 (2015)Google Scholar
  5. 5.
    Barker B., Humpherys J., Zumbrun K.: One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics. J. Differ. Equ. 249, 2175–2213 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barker B., Lafitte O., Zumbrun K.: Existence and stability of viscous shock profiles for 2-d isentropic mhd with infinite electrical resistivity. Acta Math. Sci. Ser. B Engl. Ed. 30, 447–498 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berthelin F., Tzavaras A.E., Vasseur A.: From discrete velocity Boltzmann equations to gas dynamics before shocks. J. Stat. Phys. 135(1), 153–173 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Berthelin, F., Vasseur, A.: From kinetic equations to multidimensional isentropic gas dynamics before shocks. SIAM J. Math. Anal. 36(6), 1807–1835 (2005, electronic)Google Scholar
  9. 9.
    Bressan A., Colombo R.: Unique solutions of \({2\times 2}\) conservation laws with large data. Indiana Univ. Math. J. 44(3), 677–725 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bressan A., Crasta G., Piccoli B.: Well-posedness of the Cauchy problem for \({n\times n}\) systems of conservation laws. Mem. Am. Math. Soc. 146(694), viii+134 (2000)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bressan A., Liu T.-P., Yang T.: \({L^1}\) stability estimates for \({n\times n}\) conservation laws. Arch. Ration. Mech. Anal. 149(1), 1–22 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen G.-Q., Frid H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147(2), 89–118 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chen G.-Q., Frid H.: Large-time behavior of entropy solutions of conservation laws. J. Differ. Equ. 152(2), 308–357 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chen G.-Q., Frid H., Li Y.: Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics. Commun. Math. Phys. 228(2), 201–217 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen G.-Q., Rascle M.: Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws. Arch. Ration. Mech. Anal. 153(3), 205–220 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Choi K., Vasseur A.: Short-time stability of scalar viscous shocks in the inviscid limit by the relative entropy method. SIAM J. Math. Anal. 47, 1405–1418 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dafermos, C.: Entropy and the stability of classical solutions of hyperbolic systems of conservation laws. In Recent Mathematical Methods in Nonlinear wave Propagation (Montecatini Terme, 1994), Lecture Notes in Math., vol. 1640, pp. 48–69. Springer, Berlin, 1996Google Scholar
  18. 18.
    Dafermos, C.: Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325. Springer, Berlin, 2000Google Scholar
  19. 19.
    Dafermos C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70(2), 167–179 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    De Lellis C., Otto F., Westdickenberg M.: Structure of entropy solutions for multi-dimensional scalar conservation laws. Arch. Ration. Mech. Anal. 170(2), 137–184 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    DiPerna R.J.: Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28(1), 137–188 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Filippov A.F.: Differential equations with discontinuous right-hand side. Mat. Sb. (N.S.) 51(93), 99–128 (1960)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Golse F., Saint-Raymond L.: The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gués O., Métivier G., Williams M., Zumbrun K.: Existence and stability of noncharacteristic boundary layers for the compressible navier-stokes and viscous mhd equations. Arch. Ration. Mech. Anal. 197, 1–87 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kang, M.-J.: Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics. (preprint)Google Scholar
  26. 26.
    Kang, M.-J., Vasseur, A.: \({L^2}\)-contraction for shock waves of scalar viscous conservation laws. Annales de l’Institut Henri Poincaré (C) : Analyse non linéaire. doi: 10.1016/j.anihpc.2015.10.004.
  27. 27.
    Kang M.-J., Vasseur A.: Asymptotic analysis of Vlasov-type equations under strong local alignment regime. Math. Model. Methods Appl. Sci. 25(11), 2153–2173 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kružkov S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)MathSciNetGoogle Scholar
  29. 29.
    Kwon Y.-S.: Strong traces for degenerate parabolic-hyperbolic equations. Discrete Contin. Dyn. Syst. 25(4), 1275–1286 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kwon Y.-S., Vasseur A.: Strong traces for solutions to scalar conservation laws with general flux. Arch. Ration. Mech. Anal. 185(3), 495–513 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lax P.D.: Hyperbolic systems of conservation laws. II. Comm. Pure Appl. Math. 10, 537–566 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Leger N.: \({L^2}\) stability estimates for shock solutions of scalar conservation laws using the relative entropy method. Arch. Ration. Mech. Anal. 199(3), 761–778 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Leger N., Vasseur A.: Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal. 201(1), 271–302 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Lewicka M., Trivisa K.: On the \({L^1}\) well posedness of systems of conservation laws near solutions containing two large shocks. J. Differ. Equ. 179(1), 133–177 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Lions, P.-L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal. 158(3), 173–193, 195–211 (2001)Google Scholar
  36. 36.
    Liu T.-P., Ruggeri T.: Entropy production and admissibility of shocks. Acta Math. Appl. Sin. Engl. Ser. 19(1), 1–12 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Liu T.-P., Yang T.: \({L^1}\) stability for \({2\times 2}\) systems of hyperbolic conservation laws. J. Am. Math. Soc. 12(3), 729–774 (1999)CrossRefzbMATHGoogle Scholar
  38. 38.
    Masmoudi N., Saint-Raymond L.: From the Boltzmann equation to the Stokes–Fourier system in a bounded domain. Commun. Pure Appl. Math. 56(9), 1263–1293 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Mellet A., Vasseur A.: Asymptotic analysis for a Vlasov–Fokker–Planck/compressible Navier-Stokes system of equations. Commun. Math. Phys. 281(3), 573–596 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Métivier G., Zumbrun K.: Hyperbolic boundary value problems for symmetric systems with variable multiplicities. J. Differ. Equ. 211, 61–134 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Panov E.Y.: Existence of strong traces for generalized solutions of multidimensional scalar conservation laws. J. Hyperbolic Differ. Equ. 2(4), 885–908 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Panov E.Y.: Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperbolic Differ. Equ. 4(4), 729–770 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Saint-Raymond L.: Convergence of solutions to the Boltzmann equation in the incompressible Euler limit. Arch. Ration. Mech. Anal. 166(1), 47–80 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Serre D.: Oscillations non linéaires des systémes hyperboliques: méthodes et résultats qualitatifs. Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 351–417 (1991)Google Scholar
  45. 45.
    Serre D.: Systems of Conservation Laws I, II. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  46. 46.
    Serre D.: Long-time stability in system of conservation laws, using relative entropy/energy. Arch. Ration. Mech. Anal. 219(2), 679–699 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Serre, D., Vasseur, A.: About the relative entropy method for hyperbolic systems of conservation laws. Contemp. Math. AMS (2015, to appear)Google Scholar
  48. 48.
    Serre, D., Vasseur, A.: \({L^2}\)-type contraction for systems of conservation laws. J. l’Ecole Polytech. 1, 1–28 (2014)Google Scholar
  49. 49.
    Temple B.: No \({L^1}\)-contractive metrics for systems of conservation laws. Trans. Am. Math. Soc. 288, 471–480 (1985)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Texier B., Zumbrun K.: Entropy criteria and stability of extreme shocks: a remark on a paper of Leger and Vasseur. Proc. AMS 143(2), 749–754 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Vasseur, A.: Relative entropy and contraction for extremal shocks of conservation laws up to a shift. Contemp. Math. AMS (2013, to appear)Google Scholar
  52. 52.
    Vasseur A.: Time regularity for the system of isentropic gas dynamics with \({\gamma=3}\). Commun. Partial Differ. Equ. 24(11–12), 1987–1997 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Vasseur A.: Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160(3), 181–193 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Vasseur, A.: Recent results on hydrodynamic limits. In Handbook of differential equations: evolutionary equations, vol. IV, Handb. Differ. Equ., pp. 323–376. Elsevier/North-Holland, Amsterdam, 2008Google Scholar
  55. 55.
    Wagner D.: Equivalence of the euler and lagrangian equations of gas dynamics for weak solutions. J. Differ. Equ. 68, 118–136 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Yau H.-T.: Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22(1), 63–80 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsThe University of Texas at AustinAustinUSA

Personalised recommendations