Archive for Rational Mechanics and Analysis

, Volume 219, Issue 2, pp 607–636 | Cite as

Optimal Scaling in Solids Undergoing Ductile Fracture by Crazing



We derive optimal scaling laws for the macroscopic fracture energy of polymers failing by crazing. We assume that the effective deformation-theoretical free-energy density is additive in the first and fractional deformation-gradients, with zero growth in the former and linear growth in the latter. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. For this particular geometry, we derive optimal scaling laws for the dependence of the specific fracture energy on cross-sectional area, micromechanical parameters, opening displacement and intrinsic length of the material. In particular, the upper bound is obtained by means of a construction of the crazing type.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.A.: Sobolev spaces. In: Pure and Applied Mathematics, vol. 65. Academic Press, New York, 1975Google Scholar
  2. 2.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. In: Oxford Mathematical Monographs. Oxford University Press, New York, 2000Google Scholar
  3. 3.
    Argon A.S.: The Physics of Deformation and Fracture of Polymers. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  4. 4.
    Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. Ser. A 306(1496), 557–611 (1982)MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Basu S., Mahajan D.K., Vander Giessen E.: Micromechanics of the growth of a craze fibril in glassy polymers. Polymer 46(18), 7504–7518 (2005)CrossRefGoogle Scholar
  6. 6.
    Ben Belgacem H., Conti S., DeSimone A., Müller S.: Energy scaling of compressed elastic films. Arch. Rat. Mech. Anal. 164, 1–37 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Choksi R., Kohn R.V., Otto F.: Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Commun. Math. Phys. 201, 61–79 (1999)MATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Conti S.: Branched microstructures: scaling and asymptotic self-similarity. Commun. Pure Appl. Math. 53, 1448–1474 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Conti S., DeLellis C.: Some remarks on the theory of elasticity for compressible neohookean materials. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2(5), 521–549 (2003)MATHMathSciNetGoogle Scholar
  10. 10.
    Conti S., Ortiz M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Rat. Mech. Anal. 176, 103–147 (2005)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)MATHGoogle Scholar
  12. 12.
    Flory P.J.: Statistical Mechanics of Chain Molecules. Hanser Publishers, Munich (1989)Google Scholar
  13. 13.
    Fokoua L., Conti S., Ortiz M.: Optimal scaling in solids undergoing ductile fracture by void sheet formation. Arch. Rat. Mech. Anal. 212, 331–357 (2014)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Fokoua L., Conti S., Ortiz M.: Optimal scaling laws for ductile fracture derived from strain-gradient microplasticity. J. Mech. Phys. Solids 62, 295–311 (2014)MathSciNetCrossRefADSMATHGoogle Scholar
  15. 15.
    Henao D., Mora-Corral C.: Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Rat. Mech. Anal. 197, 619–655 (2010)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Heyden, S., Conti, S., Ortiz, M.: A nonlocal model of fracture by crazing in polymers. Mech. Mater. (2015). doi:10.1016/j.mechmat.2015.02.006
  17. 17.
    Heyden, S., Li, B., Weinberg, K., Conti, S., Ortiz, M.: A micromechanical damage and fracture model for polymers based on fractional strain-gradient elasticity. J. Mech. Phys. Solids 74, 175–195 (2015). doi:10.1016/j.jmps.2014.08.005
  18. 18.
    James R.D., Spector S.J.: The formation of filamentary voids in solids. J. Mech. Phys. Solids 39, 783–813 (1991)MATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Kausch, H.H. (ed.): Crazing in Polymers. Springer, Berlin, 1983Google Scholar
  20. 20.
    Kohn R.V., Müller S.: Branching of twins near an austenite-twinned-martensite interface. Phil. Mag. A 66, 697–715 (1992)CrossRefADSGoogle Scholar
  21. 21.
    Kohn R.V., Müller S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47, 405–435 (1994)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kröner, E. (ed.): Mechanics of Generalized Continua; Proceedings of the IUTAM-Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications. Springer, Berlin, 1968Google Scholar
  23. 23.
    Lunardi, A.: Interpolation theory. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 2nd edn. Edizioni della Normale, Pisa, 2009Google Scholar
  24. 24.
    Maugin, G.A., Metrikine, A.V.: Mechanics of generalized continua: one hundred years after the Cosserats. Advances in Mechanics and Mathematics. Springer, New York, 2010Google Scholar
  25. 25.
    Mindlin, R.D., Hermann, G.: R.D. Mindlin and Applied Mechanics; A Collection of Studies in the Development of Applied Mechanics, Dedicated to Professor Raymond D. Mindlin by his Former Students. Pergamon Press, New York, 1974Google Scholar
  26. 26.
    Müller S., Spector S.J.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rat. Mech. Anal. 131, 1–66 (1995)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Seelig T., Vander Giessen E.: A cell model study of crazing and matrix plasticity in rubber-toughened glassy polymers. Comput. Mater. Sci. 45, 725–728 (2009)CrossRefGoogle Scholar
  28. 28.
    Socrate S., Boyce M.C., Lazzeri A.: A micromechanical model for multiple crazing in high impact polystyrene. Mech. Mater. 33, 155–175 (2001)CrossRefGoogle Scholar
  29. 29.
    Tartar L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)MATHGoogle Scholar
  30. 30.
    Weiner J.H.: Statistical Mechanics of Elasticity, 2nd edn. Dover Publications, Mineola (2002)MATHGoogle Scholar
  31. 31.
    Yong Z., Liechti K.M., Ravi-Chandar K.: Direct extraction of rate-dependent traction–separation laws for polyurea/steel interfaces. Int. J. Solids Struct. 46, 31–51 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany
  2. 2.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations