Archive for Rational Mechanics and Analysis

, Volume 219, Issue 1, pp 349–386 | Cite as

Solutions of the Time-Harmonic Wave Equation in Periodic Waveguides: Asymptotic Behaviour and Radiation Condition

  • Sonia FlissEmail author
  • Patrick Joly


In this paper, we give the expression and the asymptotic behaviour of the physical solution of a time harmonic wave equation set in a periodic waveguide. This enables us to define a radiation condition and show well-posedness of the Helmholtz equation set in a periodic waveguide.


Photonic Crystal Radiation Condition Helmholtz Equation Outgoing Mode Limit Absorption Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams Robert, A., Fournier, J.: Sobolev spaces, vol. 140. Academic press, Amsterdam, 2003Google Scholar
  2. 2.
    Agmon, S.: Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators, vol. 29 of Mathematical Notes. Princeton University Press, Princeton, 1982Google Scholar
  3. 3.
    Lombardet, B., Dunbar, L.A., Ferrini, R., Houdr, R.: A quantitative analysis of self-collimation effects in planar photonic crystals. J. App. Phys., 99, 096108 (2006)Google Scholar
  4. 4.
    Momeni B., Huang J., Soltani M., Askari M., Mohammadi S., Rakhsandehroo M., Adibi A.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Optics Express, 14(6), 2413–2422 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Bentosela F., Duclos P., Exner P.: Absolute continuity in periodic thin tubes and strongly coupled leaky wires. Lett. Math. Phys., 65, 75–82 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Bonnet-Bendhia, A.-S., Tillequin, A.: A limiting absorption principle for scattering problems with unbounded obstacles. Math. Methods Appl. Sci., 24(14), 1089–1111 (2001)Google Scholar
  7. 7.
    Bourgeois, L., Fliss, S.: On the identification of defects in a periodic waveguide from far field data. Inverse Problems, 30, 095004 (2014)Google Scholar
  8. 8.
    Eidus, D.: The limiting absorption and amplitude principles for the diffraction problem with two unbounded media. Communications in Mathematical Physics, 107(1), 29–38 (1986)Google Scholar
  9. 9.
    Èidus, D.M., Hill, C.D.: On the principle of limiting absorption. Technical report, DTIC Document, 1963Google Scholar
  10. 10.
    Fliss, S., Joly, P.: Exact boundary conditions for time-harmonic wave propagation in locally perturbed periodic media. Appl. Numer. Math., doi: 10.1016/j.apnum.2008.12.013, (2008)
  11. 11.
    Fliss, S.: Etude mathématique et numérique de la propagation des ondes dans un milieu pèriodique présentant un défaut. Ph.D. thesis. Ecole Doctorale de l’Ecole Polytechnique, Palaiseau, France, 2009Google Scholar
  12. 12.
    Gérard C., Nier F.: The Mourre theory for analytically fibered operators. J. Funct. Anal., 152(1), 202–219 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Grisvard, P.: Elliptic problems in nonsmooth domains, vol. 69. SIAM, 2011Google Scholar
  14. 14.
    Hoang V.: The limiting absorption principle for a periodic semi-infinite waveguide. SIAM J. Appl. Math. 71(3), 791–810 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Iftimie, V.: Principe d’absorption limite pour l’opérateur de Laplace-Dirichlet sur un ouvert au bord périodique. Math. Rep. (Bucur.) 5(55), 239–249 (2003)Google Scholar
  16. 16.
    Jensen, A., Mourre, É., Perry, P.: Multiple commutator estimates and resolvent smoothness in quantum scattering theory. Ann. Inst. H. PoincarÉ Phys. Théor. 41(2), 207–225 (1984)Google Scholar
  17. 17.
    Joannopoulos, J.D., Meade, R.D., Winn, N.J.: Photonic Crystal-Molding the Flow of Light. Princeton Univeristy Press, 1995Google Scholar
  18. 18.
    Johnson, S.G., Joannopoulos, J.D.: Photonic Crystal - The road from theory to practice. Kluwer Acad. Publ., 2002Google Scholar
  19. 19.
    Joly P., Li J.-R., Fliss S.: Exact boundary conditions for periodic waveguides containing a local perturbation. Commun. Comput. Phys., 1(6), 945–973 (2006)zbMATHGoogle Scholar
  20. 20.
    Kachkovskii, I., Filonov, N.: Absolute continuity of the spectrum of a periodic schrödinger operator in a multidimensional cylinder. Algebra i Analiz, 21, 133–152 (2009)Google Scholar
  21. 21.
    Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 editionGoogle Scholar
  22. 22.
    Kuchment, P.: Floquet theory for partial differential equations, vol. 60 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1993Google Scholar
  23. 23.
    Kuchment, P.: The mathematics of photonic crystals (chapter 7). In Mathematical modeling in optical science, vol. 22 of Frontiers in applied mathematics. SIAM, Philadelphia, 2001Google Scholar
  24. 24.
    Kuchment, P.: On some spectral problems of mathematical physics. In Partial differential equations and inverse problems, volume 362 of Contemp. Math., pp. 241–276. Amer. Math. Soc., Providence, RI, 2004Google Scholar
  25. 25.
    Levendorski\({\breve{\rm i}}\), S.Z.: Acoustic waves in perturbed periodic layer: a limiting absorption principle. Asymptot. Anal., 16(1), 15–24 (1998)Google Scholar
  26. 26.
    Morgenröther K., Werner P.: On the principles of limiting absorption and limit amplitude for a class of locally perturbed waveguides. I. Time-independent theory. Math. Methods Appl. Sci., 10(2), 125–144 (1988)zbMATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Mourre E.: Absence of singular continuous spectrum for certain self-adjoint operators. Commun. Math. Phys., 78(3), 391–408 (1981)zbMATHMathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Nazarov S.A., Plamenevsky B.A.: On radiation conditions for selfadjoint elliptic problems. Dokl. Akad. Nauk SSSR, 311(3), 532–536 (1990)MathSciNetGoogle Scholar
  29. 29.
    Nazarov, S.A., Plamenevsky, B.A.: Radiation principles for selfadjoint elliptic problems. Probl. Mat. Fiz., 13, 192–244 (1991)Google Scholar
  30. 30.
    Nazarov, S.A., Plamenevsky, B.A.: Elliptic problems in domains with piecewise smooth boundaries, vol. 13 of de Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin, 1994Google Scholar
  31. 31.
    Nazarov S.A.: The mandelshtam energy radiation conditions and the umov-poynting vector in elastic waveguides. Probl. Mat. anal., 72, 101–146 (2013)Google Scholar
  32. 32.
    Nazarov, S.A.: Umov-mandelshtam radiation conditions in elastic periodic waveguides. Sbornik: Mathematics, 205(7), 953–982 (2014)Google Scholar
  33. 33.
    Notomi, M.: Theory of light propagation in strongly modulated photonic crystals : Refractionlike behavior in the vicinity of the photonic bandgap. Phys. Rev. B, 62(16), 10696–10705 (2000)Google Scholar
  34. 34.
    Plemelj, J.: Problems In the Sense of Riemann And Klein. Interscience Publishers, New York, 1964Google Scholar
  35. 35.
    Radosz, M.: The principle of limit absorption and limit amplitude for periodic operators. Ph.D. thesis. Fakultät für Mathematik des KIT, Karlsruhe, France, 2009Google Scholar
  36. 36.
    Reed, M., Simon, B.: Methods of modern mathematical physics v. I–IV. Academic Press, New York, 1972–1978Google Scholar
  37. 37.
    Sakoda, K.: Optical Properties of Photonic Crystals. Springer Verlag Berlin, 2001Google Scholar
  38. 38.
    Sobolev, A.V., Walthoe, J.: Absolute continuity in periodic waveguides. Proc. London Math. Soc. (3), 85(3), 717–741 (2002)Google Scholar
  39. 39.
    Sokhotski, Y.W.: On definite integrals and functions used in series expansions. Doctor thesis, Saint Petersburg, 1873Google Scholar
  40. 40.
    Suslina T.A., Shterenberg R.G.: Absolute continuity of the spectrum of the magnetic schrödinger operator with a metric in a two-dimensional periodic waveguide. Algebra i Analiz, 14, 159–206 (2002)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Weder, R.: Spectral and scattering theory for wave propagation in perturbed stratfied media. Springer Science and Business Media, 1990Google Scholar
  42. 42.
    Wilcox C.H.: Steady-state wave propagation in homogeneous anisotropic media. Arch. Rational Mech. Anal., 25(3), 201–242 (1967)zbMATHMathSciNetCrossRefADSGoogle Scholar
  43. 43.
    Wilcox, C.H.: Sound propagation in stratified fluids, vol. 1 Applied Mathematical Sciences. Springer, New York, 1984Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.POEMS, UMR CNRS-ENSTA Paristech-INRIAUniversité Paris SaclayPalaiseauFrance

Personalised recommendations