Archive for Rational Mechanics and Analysis

, Volume 219, Issue 1, pp 183–202

Sobolev Homeomorphism that Cannot be Approximated by Diffeomorphisms in W1,1

Article

DOI: 10.1007/s00205-015-0895-5

Cite this article as:
Hencl, S. & Vejnar, B. Arch Rational Mech Anal (2016) 219: 183. doi:10.1007/s00205-015-0895-5

Abstract

We construct a Sobolev homeomorphism in dimension \({n \geqq 4,\,f \in W^{1,1}((0, 1)^n,\mathbb{R}^n)}\) such that \({J_f = {\rm det} Df > 0}\) on a set of positive measure and Jf < 0 on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) fk such that \({f_k\to f}\) in \({W^{1,1}_{\rm loc}}\).

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mathematical AnalysisCharles UniversityPrague 8Czech Republic

Personalised recommendations