Advertisement

Archive for Rational Mechanics and Analysis

, Volume 218, Issue 2, pp 647–697 | Cite as

Uniform Bounds for Strongly Competing Systems: The Optimal Lipschitz Case

  • Nicola SoaveEmail author
  • Alessandro Zilio
Article

Abstract

For a class of systems of semi-linear elliptic equations, including
$$-\Delta u_i=f_i(x,u_i) - \beta u_i\sum_{j\neq i}a_{ij}u_j^p,\quad i=1,\dots,k,$$
for p = 2 (variational-type interaction) or p = 1 (symmetric-type interaction), we prove that uniform \({L^\infty}\) boundedness of the solutions implies uniform boundedness of their Lipschitz norm as \({\beta \to +\infty}\), that is, in the limit of strong competition. This extends known quasi-optimal regularity results and covers the optimal case for this class of problems. The proofs rest on monotonicity formulae of Alt–Caffarelli–Friedman and Almgren type in the variational setting, and on the Caffarelli–Jerison–Kenig almost monotonicity formula in the symmetric one.

Keywords

Uniform Boundedness Reaction Term Uniform Bound Monotonicity Formula Lipschitz Regularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alt H.W., Caffarelli L.A., Friedman A.: Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc. 282(2), 431–461 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berestycki H., Lin T.-C., Wei J., Zhao C.: On phase-separation models: asymptotics and qualitative properties. Arch. Ration. Mech. Anal. 208(1), 163–200 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berestycki, H., Terracini, S., Wang, K., Wei, J.: On entire solutions of an elliptic system modeling phase separations. Adv. Math. 243, 102–126 (2013)Google Scholar
  4. 4.
    Brezis, H.: Semilinear equations in R N without condition at infinity. Appl. Math. Optim. 12(3), 271–282 (1984)Google Scholar
  5. 5.
    Caffarelli, L.A., Jerison, D., Kenig, C.E.: Some new monotonicity theorems with applications to free boundary problems. Ann. Math. (2), 155(2), 369–404 (2002)Google Scholar
  6. 6.
    Caffarelli, L.A., Karakhanyan, A.L., Lin, F.-H.: The geometry of solutions to a segregation problem for nondivergence systems. J. Fixed Point Theory Appl. 5(2), 319–351 (2009)Google Scholar
  7. 7.
    Caffarelli, L.A., Lin, F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21(3), 847–862 (2008)Google Scholar
  8. 8.
    Caffarelli, L.A., Roquejoffre, J.-M.: Uniform Hölder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames. Arch. Ration. Mech. Anal. 183(3), 457–487 (2007)Google Scholar
  9. 9.
    Caffarelli, L.A., Salsa, S.: A geometric approach to free boundary problems. In: Graduate Studies in Mathematics, vol. 68. American Mathematical Society, Providence (2005)Google Scholar
  10. 10.
    Chang S.-M., Lin C.-S., Lin T.-C., Lin W.-W.: Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensates. Phys. D 196(3–4), 341–361 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Conti M., Terracini S., Verzini G.: A variational problem for the spacial segregation of reaction–diffusion systems. Indiana Univ. Math. J. 54(3), 779–815 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Conti, M., Terracini, S., Verzini, G.: Nehari’s problem and competing species systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 19(6), 871–888 (2002)Google Scholar
  13. 13.
    Conti, M., Terracini, S., Verzini, G.: An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198(1), 160–196 (2003)Google Scholar
  14. 14.
    Conti, M., Terracini, S., Verzini, G.: Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195(2), 524–560 (2005)Google Scholar
  15. 15.
    Dancer, E.N., Wang, K., Zhang, Z.: The limiting equation for the Gross–Pitaevskii equations and S. Terracini’s conjectures. J. Funct. Anal. 262(3), 1087–1131 (2012)Google Scholar
  16. 16.
    Dancer E.N., Wang K., Zhang Z.: Uniform Hölder estimate for singularly perturbed parabolic systems of Bose–Einstein condensates and competing species. J. Differ. Equ. 251(10), 2737–2769 (2011)MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Farina, A., Soave, N.: Monotonicity and 1-dimensional symmetry for solutions of an elliptic system arising in Bose–Einstein condensation. Arch. Ration. Mech. Anal. 213(1), 287–326 (2014)Google Scholar
  18. 18.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, 2nd edn. Springer, Berlin (1983)Google Scholar
  19. 19.
    Matevosyan, N., Petrosyan, A.: Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients. Commun. Pure Appl. Math. 64(2), 271–311 (2011)Google Scholar
  20. 20.
    Mimura, M.: Spatial distributions of competiing species. In: Mathematical Ecology (Trieste, 1982). Lecture Notes in Biomathematics, vol. 54, pp. 492–501 (1982)Google Scholar
  21. 21.
    Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63(3), 267–302 (2010)Google Scholar
  22. 22.
    Parkins A.S., Walls D.F.: The physics of trapped dilute-gas Bose–Einstein condensates. Phys. Rep. 303, 1–80 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation. The international series of monographs on physics, Oxford Science Publications, Oxford (2003)Google Scholar
  24. 24.
    Quitalo, V.: A free boundary problem arising from segregation of populations with high competition. Arch. Ration. Mech. Anal. 210(3), 857–908 (2013)Google Scholar
  25. 25.
    Ramos, M., Tavares, H., Terracini, S.: Existence and regularity of solutions to optimal partition problems involving laplacian eigenvalues. arXiv:1403.6313
  26. 26.
    Rüegg, C., Cavadini, N., Furrer, A., Güdel, H.U., Krämer, K., Mutka, H., Wildes, A., Habicht, K., Vorderwisch, P.: Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3. Nature 423, 62–65 (2003)Google Scholar
  27. 27.
    Shigesada N., Kawasaki K., Teramoto E.: The effects of interference competition on stability, structure and invasion of a multi species system. J. Math. Biol. 21(2), 97–113 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Soave, N., Tavares, H., Zilio, A.: Quasi-optimal local bounds for strongly competing Schrödinger equations with nontrivial grouping. (Preprint)Google Scholar
  29. 29.
    Soave, N., Terracini, S.: Liouville theorems and 1-dimensional symmetry for solutions of an elliptic system modelling phase separation. Adv. Math. arXiv:1404.7288
  30. 30.
    Soave, N., Zilio, A.: Entire solutions with exponential growth for an elliptic system modeling phase separation. Nonlinearity 27 (2), 305–342 (2014)Google Scholar
  31. 31.
    Tavares, H., Terracini, S.: Regularity of the nodal set of segregated critical configurations under a weak reflection law. Calc. Var. Partial Differ. Equ. 45(3–4), 273–317 (2012)Google Scholar
  32. 32.
    Terracini, S., Verzini, G., Zilio, A.: Uniform Hölder bounds for strongly competing systems involving the square root of the laplacian. arXiv:1211.6087
  33. 33.
    Terracini, S., Verzini, G., Zilio, A.: Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Discret. Contin. Dyn. Syst. 34(6), 2669–2691 (2014)Google Scholar
  34. 34.
    Timmermans E.: Phase separation of Bose–Einstein condensates. Phys. Rev. Lett. 81, 5718–5721 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Verzini, G., Zilio, A.: Strong competition versus fractional diffusion: the case of Lotka–Volterra interaction. Commun. Partial Differ. Equ. doi: 10.1080/03605302.2014.890627
  36. 36.
    Wang K.: On the De Giorgi type conjecture for an elliptic system modeling phase separation. Commun. Partial Differ. Equ. 39(4), 696–739 (2014)CrossRefzbMATHGoogle Scholar
  37. 37.
    Wang, K., Zhang, Z.: Some new results in competing systems with many species. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2), 739–761 (2010)Google Scholar
  38. 38.
    Wei J., Weth T.: Asymptotic behaviour of solutions of planar elliptic systems with strong competition. Nonlinearity 21(2), 305–317 (2008)MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Mathematisches InstitutJustus Liebig Universität GiessenGiessenGermany
  2. 2.Centre d’analyse et de mathématique socialesÉcole des Hautes Études en Sciences SocialesParis Cedex 13France

Personalised recommendations