Advertisement

Archive for Rational Mechanics and Analysis

, Volume 217, Issue 1, pp 113–154 | Cite as

Hyperbolic Second Order Equations with Non-Regular Time Dependent Coefficients

  • Claudia Garetto
  • Michael Ruzhansky
Open Access
Article

Abstract

In this paper we study weakly hyperbolic second order equations with time dependent irregular coefficients. This means assuming that the coefficients are less regular than Hölder. The characteristic roots are also allowed to have multiplicities. For such equations, we describe the notion of a ‘very weak solution’ adapted to the type of solutions that exist for regular coefficients. The construction is based on considering Friedrichs-type mollifiers of coefficients and corresponding classical solutions, and their quantitative behaviour in the regularising parameter. We show that even for distributional coefficients, the Cauchy problem does have a very weak solution, and that this notion leads to classical or to ultradistributional solutions under conditions when such solutions also exist. In concrete applications, the dependence on the regularising parameter can be traced explicitly.

Keywords

Weak Solution Cauchy Problem Hyperbolic Equation Energy Estimate Cauchy Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Benmeriem K., Bouzar C.: Generalized Gevrey ultradistributions. N. Y. J. Math. 15, 37–72 (2009)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Bernardi E., Parenti C., Parmeggiani A.: The Cauchy problem for hyperbolic operators with double characteristics in presence of transition. Commun. Partial Differ. Equ. 37(7), 1315–1356 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bronšteĭn M.D.: Smoothness of roots of polynomials depending on parameters. Sibirsk. Mat. Zh. 20(3), 493– (1979)MathSciNetGoogle Scholar
  4. 4.
    Bronšteĭn M.D.: The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Tr. Moskov. Mat. Obshch. 41, 83– (1980)Google Scholar
  5. 5.
    Cicognani M., Colombini F.: A well-posed Cauchy problem for an evolution equation with coefficients of low regularity. J. Differ. Equ. 254(8), 3573–3595 (2013)CrossRefADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    Colombini F., De Giorgi E., Spagnolo S.: Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 6(3), 511–559 (1979)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Colombini F., Del Santo D., Kinoshita T.: Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(2), 327–358 (2002)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Colombini F., Del Santo D., Reissig M.: On the optimal regularity of coefficients in hyperbolic Cauchy problems. Bull. Sci. Math. 127(4), 328–347 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Colombini F., Jannelli E., Spagnolo S.: Well-posedness in the Gevrey classes of the Cauchy problem for a nonstrictly hyperbolic equation with coefficients depending on time. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 10(2), 291–312 (1983)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Colombini F., Jannelli E., Spagnolo S.: Nonuniqueness in hyperbolic Cauchy problems. Ann. Math. (2) 126(3), 495–524 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Colombini F., Kinoshita T.: On the Gevrey well posedness of the Cauchy problem for weakly hyperbolic equations of higher order. J. Differ. Equ. 186(2), 394–419 (2002)CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    Colombini F., Orrù N., Pernazza L.: On the regularity of the roots of hyperbolic polynomials. Isr. J. Math. 191(2), 923–944 (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Colombini F., Spagnolo S.: An example of a weakly hyperbolic Cauchy problem not well posed in \({C^{\infty}}\). Acta Math. 148, 243–253 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    D’Ancona P., Spagnolo S.: Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1(1), 169–185 (1998)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Gelfand I.M.: Some questions of analysis and differential equations. Am. Math. Soc. Transl. (2). 26, 201–219 (1963)Google Scholar
  16. 16.
    Garetto C., Ruzhansky M.: On the well-posedness of weakly hyperbolic equations with time-dependent coefficients. J. Differ. Equ. 253(5), 1317–1340 (2012)CrossRefADSzbMATHMathSciNetGoogle Scholar
  17. 17.
    Garetto C., Ruzhansky M.: Weakly hyperbolic equations with non-analytic coefficients and lower order terms. Math. Ann. 357(2), 401–440 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Garetto C., Ruzhansky M.: A note on weakly hyperbolic equations with analytic principal part. J. Math. Anal. Appl. 412(1), 1–14 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hörmann G., de Hoop M.V.: Microlocal analysis and global solutions of some hyperbolic equations with discontinuous coefficients. Acta Appl. Math. 67(2), 173–224 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Hörmann G., de Hoop M.V.: Detection of wave front set perturbations via correlation: foundation for wave-equation tomography. Appl. Anal. 81(6), 1443–1465 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Hurd A.E., Sattinger D.H.: Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients. Trans. Am. Math. Soc. 132, 159–174 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 editionGoogle Scholar
  23. 23.
    Kinoshita T., Spagnolo S.: Hyperbolic equations with non-analytic coefficients. Math. Ann. 336(3), 551–569 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Lafon F., Oberguggenberger M.: Generalized solutions to symmetric hyperbolic systems with discontinuous coefficients: the multidimensional case. J. Math. Anal. Appl. 160(1), 93–106 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Marsan D., Bean C.J.: Multiscaling nature of sonic velocities and lithology in the upper crystalline crust: evidence from the KTB main borehole. Geophys. Res. Lett. 26, 275–278 (1999)CrossRefADSGoogle Scholar
  26. 26.
    Nishitani T.: Sur les équations hyperboliques à coefficients höldériens en t et de classe de Gevrey en x. Bull. Sci. Math. (2) 107(2), 113–138 (1983)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Nicola, F., Rodino, L.: Global Pseudo-Differential Calculus on Euclidean Spaces. Pseudo-Differential Operators. Theory and Applications, vol. 4. Birkhäuser, Basel (2010)Google Scholar
  28. 28.
    Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equations. Pitman Research Notes in Mathematics Series, vol. 259. Longman Scientific & Technical, Harlow (1992)Google Scholar
  29. 29.
    Parenti C., Parmeggiani A.: On the Cauchy problem for hyperbolic operators with double characteristics. Commun. Partial Differ. Equ. 34(7–9), 837–888 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Schwartz L.: Sur l’impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris 239, 847–848 (1954)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Teofanov N.: Modulation spaces, Gelfand–Shilov spaces and pseudodifferential operators. Sampl. Theory Signal Image Process 5(2), 225–242 (2006)zbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.Department of Mathematical SciencesLoughborough UniversityLoughboroughUK
  2. 2.Department of MathematicsImperial College LondonLondonUK

Personalised recommendations