Archive for Rational Mechanics and Analysis

, Volume 216, Issue 3, pp 921–981 | Cite as

Optimal Shape and Location of Sensors for Parabolic Equations with Random Initial Data

Article

Abstract

In this article, we consider parabolic equations on a bounded open connected subset \({\Omega}\) of \({\mathbb{R}^n}\). We model and investigate the problem of optimal shape and location of the observation domain having a prescribed measure. This problem is motivated by the question of knowing how to shape and place sensors in some domain in order to maximize the quality of the observation: for instance, what is the optimal location and shape of a thermometer? We show that it is relevant to consider a spectral optimal design problem corresponding to an average of the classical observability inequality over random initial data, where the unknown ranges over the set of all possible measurable subsets of \({\Omega}\) of fixed measure. We prove that, under appropriate sufficient spectral assumptions, this optimal design problem has a unique solution, depending only on a finite number of modes, and that the optimal domain is semi-analytic and thus has a finite number of connected components. This result is in strong contrast with hyperbolic conservative equations (wave and Schrödinger) studied in Privat et al. (J Eur Math Soc, 2015) for which relaxation does occur. We also provide examples of applications to anomalous diffusion or to the Stokes equations. In the case where the underlying operator is any positive (possible fractional) power of the negative of the Dirichlet-Laplacian, we show that, surprisingly enough, the complexity of the optimal domain may strongly depend on both the geometry of the domain and on the positive power. The results are illustrated with several numerical simulations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, Vol. 55, Washington, DC, 1964Google Scholar
  2. 2.
    Allaire G., Münch A., Periago F.: Long time behavior of a two-phase optimal design for the heat equation. SIAM J. Control Optim. 48(8), 5333–5356 (2010)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Anantharaman N., Nonnenmacher S.: Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold. Ann. Inst. Four. (Grenoble) 57(7), 2465–2523 (2007)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Antoniades C., Christofides P. D.: Integrating nonlinear output feedback control and optimal actuator/sensor placement for transport-reaction processes. Chem. Eng. Sci. 56(15), 4517–4535 (2001)CrossRefGoogle Scholar
  5. 5.
    Apraiz, J., Escauriaza, L., Wang, G., Zhang, C.: Observability inequalities and measurable sets. J. Europ. Math. Soc. 16(11), 2433–2475 (2014)Google Scholar
  6. 6.
    Armaoua, A., Demetriou, M.: Optimal actuator/sensor placement for linear parabolic PDEs using spatial H 2 norm. Chem. Eng. Sci. 61, 7351–7367 (2006)Google Scholar
  7. 7.
    Baouendi, M.S., Métivier, G.: Analytic vectors of hypoelliptic operators of principal type. Amer. J. Math. 104(2), 287–319 (1982)Google Scholar
  8. 8.
    Bergounioux, M., Trélat, E.: A variational method using fractional order Hilbert spaces for tomographic reconstruction of blurred and noised binary images. J. Funct. Anal. 259(9), 2296–2332 (2010)Google Scholar
  9. 9.
    Boyer, F., Fabrie, P.: Mathematical tools for the study of the incompressible Navier–Stokes equations and related models. Applied Mathematical Sciences, Vol. 183. Springer, Berlin, 2013Google Scholar
  10. 10.
    Bucur, D., Buttazzo, G.: Variational methods in shape optimization problems. Progress in Nonlinear Differential Equations, Vol. 65. Birkhäuser, Basel, 2005Google Scholar
  11. 11.
    Burq N.: Large-time dynamics for the one-dimensional Schrödinger equation. Proc. Roy. Soc. Edinburgh Sect. A. 141(2), 227–251 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Burq N., Tzvetkov N.: Random data Cauchy theory for supercritical wave equations. I. Local theory. Invent. Math. 173(3), 449–475 (2008)CrossRefADSMATHMathSciNetGoogle Scholar
  13. 13.
    Burq, N., Zworski, M.: Bouncing ball modes and Quantum chaos. SIAM Rev. 47(1), 43–49 (2005)Google Scholar
  14. 14.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Diff. Eq. 32, 1245–1260 (2007)Google Scholar
  15. 15.
    Choulli, M.: Une introduction aux problèmes inverses elliptiques et paraboliques. Mathématiques & Applications, Vol. 65. Springer, Berlin, 2009Google Scholar
  16. 16.
    Colin de Verdière, Y.: Ergodicité et fonctions propres du Laplacien. Comm. Math. Phys. 102, 497–502 (1985)Google Scholar
  17. 17.
    El-Farra N.H., Demetriou M.A., Christofides P.D.: Actuator and controller scheduling in nonlinear transport-reaction processes. Chem. Engi. Sci. 63, 3537–3550 (2008)CrossRefGoogle Scholar
  18. 18.
    Fernández-Cara, E., González-Burgos, M., Guerrero, S., Puel, J-P.: Null controllability of the heat equation with boundary Fourier conditions: the linear case. ESAIM Control Optim. Calc. Var. 12(3), 442–465 (2006)Google Scholar
  19. 19.
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Duxbury Press, Belmont, 2002Google Scholar
  20. 20.
    Fernandez-Cara, E., Guerrero, S., Imanuvilov, O.Yu., Puel, J.-P.: Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83, 1501–1542 (2004)Google Scholar
  21. 21.
    Fernández-Cara, E., Münch, A.: Numerical null controllability of semi-linear 1D heat equations: fixed point, least squares and Newton methods. Math. Control Relat. Fields 3(2), 217–246 (2012)Google Scholar
  22. 22.
    Fursikov, A.V., Imanuvilov, O.Y.: Controllability of Evolution Equations, Lecture Notes Series, Vol. 34. Seoul National University Research Institute of Mathematics, 1996Google Scholar
  23. 23.
    Gérard P., Leichtnam E.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71, 559–607 (1993)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Hardt, R.M.: Stratification of real analytic mappings and images. Invent. Math. 28 (1975)Google Scholar
  25. 25.
    Harris, T.J., Macgregor, J.F., Wright, J.D.: Optimal sensor location with an application to a packed bed tubular reactor. AIChE J. 26(6), 910–916 (1980)Google Scholar
  26. 26.
    Hartung, J.: An extension of Sion’s minimax theorem with an application to a method for constrained games. Pacific J. Math. 103(2), 401–408 (1982)Google Scholar
  27. 27.
    Hassell A., Zelditch S.: Quantum ergodicity of boundary values of eigenfunctions. Comm. Math. Phys. 248(1), 119–168 (2004)CrossRefADSMATHMathSciNetGoogle Scholar
  28. 28.
    Hébrard P., Henrot A.: Optimal shape and position of the actuators for the stabilization of a string. Syst. Cont. Lett. 48, 199–209 (2003)CrossRefMATHGoogle Scholar
  29. 29.
    Hébrard, P., Henrot, A.: A spillover phenomenon in the optimal location of actuators. SIAM J. Control Optim. 44, 349–366 (2005)Google Scholar
  30. 30.
    Hironaka, H.: Subanalytic sets. Number Theory, Algebraic Geometry and Commutative Algebra. In honor of Y. Akizuki, Tokyo, 1973Google Scholar
  31. 31.
    Ingham A.E.: Some trigonometrical inequalities with applications to the theory of series. Math. Zeitschrift 41, 367–379 (1936)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Jaffard, S., Tucsnak, M., Zuazua, E.: On a theorem of Ingham. J. Fourier Anal. Appl. 3, 577–582 (1997)Google Scholar
  33. 33.
    Jakobson, D.: Quantum limits on flat tori. Ann. Math. 145, 235–266 (1997)Google Scholar
  34. 34.
    Jakobson, D., Zelditch, S.: Classical limits of eigenfunctions for some completely integrable systems. Emerging Applications of Number Theory (Minneapolis, MN, 1996), IMA Vol. Math. Appl., Vol. 109. Springer, New York, 329–354, 1999Google Scholar
  35. 35.
    Keyantuo, V., Lizama, C., Warma, M.: Asymptotic behavior of fractional order semilinear evolution equations. Differ. Integral Equ. 26, 757–780 (2013)Google Scholar
  36. 36.
    Kelliher J.: On the vanishing viscosity limit in a disk. Math. Ann. 343(3), 701–726 (2009)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Krasikov I.: Approximations for the Bessel and Airy functions with an explicit error term. LMS J. Comput. Math. 17(1), 209–225 (2014)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Lagnese, J.: Control of wave processes with distributed controls supported on a subregion. SIAM J. Control Optim. 21(1), 68–85 (1983)Google Scholar
  39. 39.
    Léautaud, M.: Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems. J. Funct. Anal. 258, 2739–2778 (2010)Google Scholar
  40. 40.
    Lebeau G., Robbiano L.: Contrôle exact de l’équation de la chaleur. Comm. Partial Differ. Equ. 20, 335–356 (1995)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Lee, D.-S., Rummler, B.: The eigenfunctions of the Stokes operator in special domains. III. ZAMM Z. Angew. Math. Mech. 82(6), 399–407 (2002)Google Scholar
  42. 42.
    Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications, Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968Google Scholar
  43. 43.
    Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(31), R161–R208 (2004)Google Scholar
  44. 44.
    Micu, S., Zuazua, E.: On the controllability of a fractional order parabolic equation. SIAM J. Cont. Optim. 44(6), 1950–1972 (2006)Google Scholar
  45. 45.
    Miller L.: On the controllability of anomalous diffusions generated by the fractional Laplacian. Math. Control Signals Systems 18(3), 260–271 (2006)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Morris K.: Linear-quadratic optimal actuator location. IEEE Trans. Automat. Control 56(1), 113–124 (2011)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Münch, A., Periago, F.: Optimal distribution of the internal null control for the 1D heat equation. J. Differ. Equ. 250, 95–111 (2011)Google Scholar
  48. 48.
    Nguyen, B.-T., Grebenkov, D.S.: Localization of Laplacian eigenfunctions in circular, spherical and elliptical domains. SIAM J. Appl. Math. 73, 780–803 (2013)Google Scholar
  49. 49.
    Olver, F.W.J.: A further method for the evaluation of zeros of Bessel functions, and some new asymptotic expansions for zeros of functions of large order. Proc. Cambridge Philos. Soc. 47, 699–712 (1951)Google Scholar
  50. 50.
    Paley, R.E.A.C., Zygmund, A.: On some series of functions (1) (2) (3). Proc. Camb. Phil. Soc. 26, 337–357, 458–474 (1930), 28, 190–205 (1932)Google Scholar
  51. 51.
    Periago F.: Optimal shape and position of the support for the internal exact control of a string. Syst. Cont. Letters 58(2), 136–140 (2009)CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Privat, Y., Sigalotti, M.: The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent. ESAIM Control Optim. Calc. Var. 16(3), 794–805 (2010)Google Scholar
  53. 53.
    Privat, Y., Trélat, E., Zuazua, E.: Optimal location of controllers for the one-dimensional wave equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 1097–1126 (2013)Google Scholar
  54. 54.
    Privat, Y., Trélat, E., Zuazua, E.: Optimal observability of the one-dimensional wave equation. J. Fourier Anal. Appl. 19(3), 514–544 (2013)Google Scholar
  55. 55.
    Privat, Y., Trélat, E., Zuazua, E.: Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete Cont. Dynam. Syst. (to appear, 2015)Google Scholar
  56. 56.
    Privat, Y., Trélat, E., Zuazua, E.: Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains, Preprint Hal J. Europ. Math. Soc. (to appear, 2015)Google Scholar
  57. 57.
    Shnirelman, A.: Ergodic properties of eigenfunctions. Uspenski Math. Nauk 29/6, 181–182 (1974)Google Scholar
  58. 58.
    Siegel, K.M.: An inequality involving Bessel functions of argument nearly equal to their order. Proc. Amer. Math. Soc. 4, 858–859 (1953)Google Scholar
  59. 59.
    Sion M.: On general minimax theorems. Pacific J. Math. 8, 171–176 (1958)CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    Sokolov I., Klafter J., Blumen A.: Fractional kinetics. Phys. Today 55, 48–54 (2002)CrossRefGoogle Scholar
  61. 61.
    Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser Verlag, Basel, 2009Google Scholar
  62. 62.
    Vande Wouwer, A., Point, N., Porteman, S., Remy, M.: An approach to the selection of optimal sensor locations in distributed parameter systems. J. Process Cont. 10, 291–300 (2000)Google Scholar
  63. 63.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)Google Scholar
  64. 64.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, London, 1952Google Scholar
  65. 65.
    Zelditch, S.: Eigenfunctions and Nodal Sets, Preprint 2012Google Scholar
  66. 66.
    Zelditch S., Zworski M.: Ergodicity of eigenfunctions for ergodic billiards. Comm. Math. Phys. 175(3), 673–682 (1996)CrossRefADSMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yannick Privat
    • 1
  • Emmanuel Trélat
    • 2
  • Enrique Zuazua
    • 3
    • 4
  1. 1.CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598Laboratoire Jacques-Louis LionsParisFrance
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7598Laboratoire Jacques-Louis Lions, Institut Universitaire de FranceParisFrance
  3. 3.Ikerbasque, Basque Foundation for ScienceBilbaoSpain
  4. 4.BCAM, Basque Center for Applied MathematicsBilbaoSpain

Personalised recommendations