Advertisement

Archive for Rational Mechanics and Analysis

, Volume 215, Issue 3, pp 707–739 | Cite as

The Eshelby Theorem and its Variants for Piezoelectric Media

  • G. Leugering
  • S. A. Nazarov
Article

Abstract

We prove the Eshelby theorem for an ellipsoidal piezoelectric inclusion in an infinite piezoelectric material. Explicit formulas for the link and polarization matrices are derived. Passing to the limits with respect to parameters in the corresponding equations, the result is extended to cases when either the inclusion or the surrounding material is purely elastic.

Keywords

Piezoelectric Material Moment Tensor Orthogonality Condition Fundamental Matrix Adjoint Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17/1, 35–92 (1964)Google Scholar
  2. 2.
    Ammari, H., Capdeboscq, Y., Kang, H., Lee, H., Milton, G.M., Zribi, H.: Progress on the strong Eshelby’s conjecture and extremal structures for the elastic moment tensor. J. Math. Pures Appl. 94/1, 93–106 (2009)Google Scholar
  3. 3.
    Ammari, H., Kang, H.: Polarizaton and Moment Tensors. With applications to inverse problems and effective medium theory. Applied Mathematical Sciences., 162. Springer, New York, 2007Google Scholar
  4. 4.
    Ammari H., Kang H., Nakamura G., Tanuma K.: Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion. J. Elast. 67(2), 97–129 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bertram, A.: Elasticity and Plasticity of Large Deformations. Springer, Berlin, Heidelberg, New York, 2005Google Scholar
  6. 6.
    Cardone G., Nazarov S.A., Sokolowski J.: Asymptotic analysis, polarization matrices, and topological derivatives for piezoelectric materials with small voids. SIAM J. Control Optim. 48/6, 3925–3961 (2010)Google Scholar
  7. 7.
    Dunn, M.L., Taya, M.: An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. In: Proceedings: Mathematical and Physical Sciences, vol. 443, no. 1918 (8 November 1993), pp 265–287, 1993Google Scholar
  8. 8.
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. Ser. A 241, 376–396 (1957)Google Scholar
  9. 9.
    Gelfand, I., Schilov, G.E.: Verallgemeinerte Funktionen (Distributionen). VEB Deutscher Verlag der Wissenschaft, Berlin, 1960Google Scholar
  10. 10.
    Hill R.: Continuum micro-mechnaics of elastoplastic polycrystals. J. Mech. Phys. Solids. 13, 89–110 (1965)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Kang H., Milton G.W.: Solutions to the Pólya-Szegö conjecture and the weak Eshelby conjecture. Arch. Rat. Mech. Anal. 188, 93–116 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kang, H.: Conjectures of Pólya-Szegö and Eshelby, and the Newtonian potential problem: a review. Mech. Mater. 41/4, 405–410 (2009)Google Scholar
  13. 13.
    Kondratiev V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16, 227–313 (1967)Google Scholar
  14. 14.
    Kuhn R., Michelitsch T., Levin V.M., Vakulenko A.A.: The analogue of the Eshelby tensor for a piezoelectric spheroidal inclusion in the hexagonal electroelastic medium. Z. Angew. Math. Phys. 53, 584–602 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ladyzhenskaya O.A.: The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, 49. Springer, New York, 1985 (translated from Izdat. “Nauka”, Moscow, 1973)Google Scholar
  16. 16.
    Lekhnistkii, S.G.: Theory of Elasticity of an Anisotropic Elastic. Holden-Day, Inc., San Francisco, 1963Google Scholar
  17. 17.
    Leugering, G., Nazarov, S.A., Slutskij, S.: Asymptotic analysis of 3D thin anisotropic plates with a piezoelectric patch. Math. Meth. Appl. Sci. (2011). doi: 10.1002/mma.1566
  18. 18.
    Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer, Berlin, 1972Google Scholar
  19. 19.
    Mazja V.G., Plamenevskii, B.A.: Estimates in Lp and Holder classes and the Miranda–Agmon maximum principle for solutions of elliptic boundary value problems in domains with singu- lar points on the boundary. Math. Nachr. [in Russian], 81, 25–82 (1978). (English translasion in: Am. Math. Soc. Transl. 123, 1–56 (1984)).Google Scholar
  20. 20.
    Mazja V.G., Plamenevskii B.A.: On coeffients in asymptotics of solutions of elliptic boundary value problems in a domain with conical points. Math. Nachr. 76, 29–60 (1977). (Engl. transl. in Am. Math. Soc. Transl. 123, 57–89 (1984)).Google Scholar
  21. 21.
    Nazarov S.A.: Asymptotic conditions at a point, self-adjoint extensions of operators, and the method of matched asymptotic expansions. Am. Math. Soc. Transl. 193(2), 77–125 (1999)Google Scholar
  22. 22.
    Nazarov S.A.: The Eshelby theorem and a problem on an optimal patch. Algebra i analiz. 21(5), 155–195 (2009). (English transl.: St. Petersburg Math. J. 21(5),791–818 (2009))Google Scholar
  23. 23.
    Nazarov S.A.: Asymptotic Theory of Thin Plates and Rods. Vol.1. Dimension Reduction and Integral Estimates, p. 408. Nauchnaya Kniga: Novosibirck, 2002 (Russian)Google Scholar
  24. 24.
    Nazarov S.A.: The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes. Uspehi mat. nauk. 54(5), 77–142 (1999). (English transl.: Russ. Math. Surv. 54(5), 947–1014 (1999))Google Scholar
  25. 25.
    Nazarov S.A., Plamenevsky B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries, p. 525. Walter de Gruyter, Berlin, New York, 1994Google Scholar
  26. 26.
    Nazarov S.A.: Elasticity polarization tensor, surface enthalpy and Eshelby theorem. Probl. Mat. Analiz. N 41. Novosibirsk, pp. 3–35, 2009. (English transl.: J. Math. Sci. 159(1/2), 133–167 (2009))Google Scholar
  27. 27.
    Pazy A.: Asymptotic expansions of ordinary differential equations in Hilbert space. Arch. Rat. Mech. Anal. 24, 193–218 (1967)Google Scholar
  28. 28.
    Polya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematical Studies, Number 27. Princeton University Press, Princeton, 1951Google Scholar
  29. 29.
    Roitberg, Y.A.: Elliptic Boundary Value Problems in the Spaces of Distributions. Kluwer Academic publishers, Dordrecht, 1996Google Scholar
  30. 30.
    Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory, Springer, Berlin, Heidelberg, New York, 1980Google Scholar
  31. 31.
    Suo Z., Kuo C.-M., Barnett D.M., Willis J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids. 40/4, 739–765 (1992)Google Scholar
  32. 32.
    Wang J., Michelitsch T., Gao H.: Dynamic fiber inclusions with elliptical and arbitrary cross-sections and related retarded potentials in a quasi-plane piezoelectric medium. Int. J. Solids Struct. 40, 6307–6333 (2003)CrossRefzbMATHGoogle Scholar
  33. 33.
    Wang B.: Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. Int. J. Solids Struct. 29, 293–308 (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsFriedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
  2. 2.Mathematics and Mechanics FacultySt. Petersburg State UniversitiySt. PetersburgRussia

Personalised recommendations