Archive for Rational Mechanics and Analysis

, Volume 216, Issue 1, pp 117–151 | Cite as

Lipschitz Regularity of the Eigenfunctions on Optimal Domains

  • Dorin Bucur
  • Dario Mazzoleni
  • Aldo Pratelli
  • Bozhidar Velichkov


We study the optimal sets \({\Omega^\ast\subseteq\mathbb{R}^d}\) for spectral functionals of the form \({F\big(\lambda_1(\Omega),\ldots,\lambda_p(\Omega)\big)}\), which are bi-Lipschitz with respect to each of the eigenvalues \({\lambda_1(\Omega), \lambda_2(\Omega)}, \ldots, {\lambda_p(\Omega)}\) of the Dirichlet Laplacian on \({\Omega}\), a prototype being the problem
$$\min{\big\{\lambda_1(\Omega)+\cdots+\lambda_p(\Omega)\;:\;\Omega\subseteq\mathbb{R}^d,\ |\Omega|=1\big\}}.$$
We prove the Lipschitz regularity of the eigenfunctions \({u_1,\ldots,u_p}\) of the Dirichlet Laplacian on the optimal set \({\Omega^\ast}\) and, as a corollary, we deduce that \({\Omega^\ast}\) is open. For functionals depending only on a generic subset of the spectrum, as for example \({\lambda_k(\Omega)}\), our result proves only the existence of a Lipschitz continuous eigenfunction in correspondence to each of the eigenvalues involved.


Lipschitz Constant Free Boundary Problem Lipschitz Continuity Lebesgue Point Shape Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Alt, H.W., Caffarelli, L.A., Friedman, A.: Variational problems with two phases and their free boundaries. Trans. Amer. Math. Soc. 282(2), 431–461 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Antunes, P., Freitas, P.: Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154(1), 235–257 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Ashbaugh, M.S.: Open problems on eigenvalues of the Laplacian. In: Analytic and Geometric Inequalities and Applications. Mathematical Applications, vol. 478, pp. 13–28. Kluwer Acad. Publ., Dordrecht, 1999Google Scholar
  5. 5.
    Briançon, T., Lamboley, J.: Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints. Ann. I. H. Poincaré 26(4), 1149–1163 (2009)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Briançon, T., Hayouni, M., Pierre, M.: Lipschitz continuity of state functions in some optimal shaping. Calc. Var. Partial Differ. Equ. 23(1), 13–32 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bucur, D.: Minimization of the k-th eigenvalue of the Dirichlet Laplacian. Arch. Rat. Mech. Anal. 206(3), 1073–1083 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations, vol. 65. Birkhäuser Verlag, Basel, 2005Google Scholar
  9. 9.
    Bucur, D., Buttazzo, G., Velichkov, B.: Spectral optimization problems with internal constraint. Ann. I. H. Poincaré 30(3), 477–495 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bucur, D., Velichkov, B.: Multiphase shape optimization problems. SIAM J. Contr. Optim. (2014, accepted)Google Scholar
  11. 11.
    Buttazzo, G.: Spectral optimization problems. Rev. Mat. Complut. 24(2), 277–322 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Buttazzo, G., Dal Maso, G.: Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23, 17–49 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Buttazzo, G., Dal Maso, G.: An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122, 183–195 (1993)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Caffarelli, L., Jerison, D., Kenig, C.: Some new monotonicity theorems with applications to free boundary problems. Ann. Math. 155(2), 369–404 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Dal Maso, G., Mosco, U.: Wiener criteria and energy decay for relaxed Dirichlet problems. Arch. Rat. Mech. Anal. 95, 345–387 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Dal Maso, G., Mosco, U.: Wiener’s criterion and \({\Gamma}\)-convergence. Appl. Math. Optim. 15, 15–63 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Davies, E.: Heat Kernels and Spectral Theory. Cambridge University Press, 1989Google Scholar
  18. 18.
    De Philippis, G., Velichkov, B.: Existence and regularity of minimizers for some spectral optimization problems with perimeter constraint. Appl. Math. Optim. 69, 199–231 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, reprint of the 1998 edition, Classics in Mathematics. Springer, Berlin (2001)Google Scholar
  20. 20.
    Henrot, A., Pierre, M.: Variation et Optimisation de Formes. Une Analyse Géométrique, Mathématiques and Applications, vol. 48. Springer, Berlin (2005)Google Scholar
  21. 21.
    Mazzoleni, D.: Boundedness of minimizers for spectral problems in \({\mathbb{R}^N}\), preprint. (2013)
  22. 22.
    Mazzoleni, D.: Existence and regularity results for solutions of spectral problems. Ph.D. Thesis, Università à di Pavia and Friedrich-Alexander Universität Erlangen-Nürnberg (in preparation) (2014)Google Scholar
  23. 23.
    Mazzoleni, D., Pratelli, A.: Existence of minimizers for spectral problems. J. Math. Pures Appl. 100(3), 433–453 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Oudet, E.: Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM:COCV 10(3), 315–330 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Talenti, G.: Elliptic equations and rearrangements. Ann. Scuola Normale Superiore di Pisa 3(4), 697–718.Google Scholar
  26. 26.
    Rayleigh, J.W.S.: The Theory of Sound, 1st edn. Macmillan, London (1877)Google Scholar
  27. 27.
    Wolf, S.A., Keller, J.B.: Range of the first two eigenvalues of the Laplacian. Proc. R. Soc. Lond., 447, 397–412 (1994)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dorin Bucur
    • 1
  • Dario Mazzoleni
    • 2
  • Aldo Pratelli
    • 3
  • Bozhidar Velichkov
    • 4
  1. 1.Laboratoire de Mathématiques (LAMA)Université de SavoieLe-Bourget-Du-LacFrance
  2. 2.Dipartimento di MatematicaUniversità degli Studi di PaviaPaviaItaly
  3. 3.Department MathematikFriederich-Alexander Universität Erlangen-NürnbergErlangenGermany
  4. 4.Scuola Normale Superiore di PisaPisaItaly

Personalised recommendations