# Applications of Fourier Analysis in Homogenization of the Dirichlet Problem: *L* ^{ p } Estimates

Article

First Online:

- 256 Downloads
- 7 Citations

## Abstract

Let where \({D \subset \mathbb{R}^d (d \geqq 2)}\), is a smooth uniformly convex domain, and which we prove is (generically) sharp for \({d \geqq 4}\). Here for both the oscillating operator and boundary data. For this case, we take \({A_\varepsilon = A(x/ \varepsilon)}\), where

*u*_{ɛ}be a solution to the system$$\rm div(A_\varepsilon(x)\nabla u_\varepsilon(x)) = 0 \quad\text{in}\, D,\quad u_\varepsilon(x) = g(x,x/\varepsilon)\quad\text{on} \,\partial\, D,$$

*g*is 1-periodic in its second variable, and both*A*_{ɛ}and*g*are sufficiently smooth. Our results in this paper are twofold. First we prove*L*^{ p }convergence results for solutions of the above system and for the non oscillating operator \({A_\varepsilon(x) = A(x)}\), with the following convergence rate for all \({1\leqq p < \infty}\)$$\left.\begin{array}{ll}\parallel\,u_\varepsilon - u_0\parallel{L^p(D)} \leqq C_p \left\{\begin{array}{ll}\varepsilon^{1/2p}, \quad\quad\quad\quad d=2, \\(\varepsilon \mid {\rm ln} \varepsilon \mid)^{1/p}, \quad d = 3, \\ \varepsilon^{1/p}, \quad\quad\quad\quad d \geqq 4,\end{array}\right.\end{array}\right.$$

*u*_{0}is the solution to the averaging problem. Second, combining our method with the recent results due to Kenig, Lin and Shen (Commun Pure Appl Math 67(8):1219–1262, 2014), we prove (for certain class of operators and when \({d \geqq 3}\))$$\parallel\,u_\varepsilon - u_0\parallel\,L^p(D) \leqq C_p [\varepsilon ({\rm ln}(1/ \varepsilon))^2 ]^{1/p}$$

*A*is 1-periodic as well. Some further applications of the method to the homogenization of the Neumann problem with oscillating boundary data are also considered.## Keywords

Convergence Rate Dirichlet Problem Boundary Data Elliptic System Neumann Problem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- 1.Aleksanyan, H., Shahgholian, H., Sjölin, P.: Applications of Fourier analysis in homogenization of Dirichlet problem I. Pointwise estimates.
*J. Differ. Equ*.**254**(6), 2626–2637 (2013)ADSCrossRefzbMATHGoogle Scholar - 2.Aleksanyan, H., Shahgholian, H., Sjölin, P.: Applications of Fourier analysis in homogenization of Dirichlet problem III: polygonal domains.
*J. Fourier Anal. Appl*. doi: 10.1007/s00041-014-9327-4 - 3.Avellaneda, M., Lin, F.-H.: Compactness methods in the theory of homogenization.
*Commun. Pure Appl. Math*.**40**(6), 803–847 (1987)Google Scholar - 4.Bensoussan, A., Lions, J.L., Papanicolaou, G.:
*Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications*. North-Holland, Amsterdam, 1978Google Scholar - 5.Dolzmann, G., Müller, S.: Estimates for Green’s matrices of elliptic systems by
*L*^{p}theory.*Manuscrpita Math*.**88**, 261–273 (1995)Google Scholar - 6.Gérard-Varet, D., Masmoudi, N.: Homogenization and boundary layers.
*Acta Math*.**209**, 133–178 (2012)CrossRefzbMATHMathSciNetGoogle Scholar - 7.Kenig, C., Lin, F.-H., Shen, Zh.: Periodic Homogenization of Green and Neumann functions.
*Commun. Pure Appl. Math*.**67**(8), 1219–1262 (2014)Google Scholar - 8.Kenig, C., Lin, F.-H., Shen, Zh.: Homogenization of elliptic systems with Neumann boundary conditions.
*J. AMS***26**(4), 901–937 (2013)Google Scholar - 9.Lee, K., Shahgholian, H.: Homogenization of the boundary value for the Dirichlet problem. Avaliable at arXiv:1201.6683v1 (2012)
- 10.Stein, E.:
*Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals*. Princeton University Press, Princeton, 1993Google Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 2014