Archive for Rational Mechanics and Analysis

, Volume 213, Issue 3, pp 887–929 | Cite as

Existence and Stability of a Screw Dislocation under Anti-Plane Deformation

  • Thomas Hudson
  • Christoph Ortner


We formulate a variational model for a geometrically necessary screw dislocation in an anti-plane lattice model at zero temperature. Invariance of the energy functional under lattice symmetries renders the problem non-coercive. Nevertheless, by establishing coercivity with respect to the elastic strain and a concentration compactness principle, we prove the existence of a global energy minimizer and thus demonstrate that dislocations are globally stable equilibria within our model.


Short Path Burger Vector Stable Equilibrium Screw Dislocation Dislocation Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alicandro R., Cicalese M.: Variational analysis of the asymptotics of the XY model. Arch. Ration. Mech. Anal. 192(3), 501–536 (2009)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Alicandro R., Cicalese M., Ponsiglione M.: Variational equivalence between Ginzburg–Landau, XY spin systems and screw dislocations energies. Indiana Univ. Math. J. 60(1), 171–208 (2011)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Amodeo R.J., Ghoniem N.M.: Dislocation dynamics. i. a proposed methodology for deformation micromechanics. Phys. Rev. B, 41, 6958–6967 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    Ariza, M.P., Ortiz, M.: Discrete crystal elasticity and discrete dislocations in crystals. Arch. Ration. Mech. Anal. 178(2) (2005)Google Scholar
  5. 5.
    Brezis, H., Coron, J.-M., Lieb, E.H.: Harmonic maps with defects. Commun. Math. Phys. 107(4) (1986)Google Scholar
  6. 6.
    Bulatov, V.V., Cai, W.: Computer Simulations of Dislocations, Oxford Series on Materials Modelling, Vol. 3. Oxford University Press, Oxford (2006)Google Scholar
  7. 7.
    Cermelli P., Leoni G.: Renormalized energy and forces on dislocations. SIAM J. Math. Anal., 37(4), 1131–1160 (2005) (electronic)MATHMathSciNetGoogle Scholar
  8. 8.
    Conti S., Garroni A., Müller S.: Singular kernels, multiscale decomposition of microstructure, and dislocation models. Arch. Ration. Mech. Anal. 199(3), 779– (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Diestel, R.: Graph theory, Graduate Texts in Mathematics, 4th edn, Vol. 173. Springer, Heidelberg, (2010)Google Scholar
  10. 10.
    Ehrlacher, V., Ortner, C., Shapeev, A.: in preparationGoogle Scholar
  11. 11.
    Föll, H.: Defects in crystals (2013).
  12. 12.
    Garroni A., Müller S.: Γ-limit of a phase-field model of dislocations. SIAM J. Math. Anal. 36(6), 1943–1964 (2005) (electronic)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Garroni, A., Leoni, G., Ponsiglione, M.: Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. (JEMS) 12(5), 1231–1266 (2010)Google Scholar
  14. 14.
    Garroni A., Müller S.: A variational model for dislocations in the line tension limit. Arch. Ration. Mech. Anal. 181(3), 535–578 (2006)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hirth J.P., Lothe J.: Theory of Dislocations. Krieger Publishing Company, Malabar (1982)Google Scholar
  16. 16.
    Hudson, T., Mason, J., Ortner, C.: in preparationGoogle Scholar
  17. 17.
    Hudson, T., Ortner, C.: ManuscriptGoogle Scholar
  18. 18.
    Hull, D., Bacon, D.J.: Introduction to Dislocations, vol. 37. Butterworth-Heinemann, 2011Google Scholar
  19. 19.
    Koslowski M., Cuitiño A.M., Ortiz M.: A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals. J. Mech. Phys. Solids 50(12), 2597–2635 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Luskin, M., Ortner, C., Van Koten, B.: Formulation and optimization of the energy-based blended quasicontinuum method. Comput. Methods Appl. Mech. Eng. 253 (2013)Google Scholar
  21. 21.
    Peletier, M.A., Geers, M.G.D., Peerlings, R.H.J., Scardia, L.: Asymptotic behaviour of a pile-up of infinite walls of edge dislocations. ArXiv e-prints (2012)Google Scholar
  22. 22.
    Miller, R., Tadmor, E.: A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17 (2009)Google Scholar
  23. 23.
    Orowan E.: Zur kristallplastizität. III. Zeitschrift für Physik 89, 634–659 (1934)ADSCrossRefGoogle Scholar
  24. 24.
    Ortner, C., Shapeev, A.: Interpolants of lattice functions for the analysis of atomistic/continuum multiscale methods. ArXiv e-prints, 1204.3705 (2012)Google Scholar
  25. 25.
    Ortner, C., Shapeev, A.V.: Analysis of an energy-based atomistic/continuum coupling approximation of a vacancy in the 2D triangular lattice. Math. Comput. (2014, in press)Google Scholar
  26. 26.
    Ortner, C., Theil, F.: Nonlinear elasticity from atomistic mechanics (2012). arXiv:1202.3858v3Google Scholar
  27. 27.
    Polanyi M.: Über eine art gitterstörung, die einen kristall plastisch machen könnte. Zeitschrift für Physik 89, 660–664 (1934)ADSCrossRefGoogle Scholar
  28. 28.
    Ponsiglione, M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39(2) (2007)Google Scholar
  29. 29.
    Rodney D., Le Bouar Y., Finel A.: Phase field methods and dislocations. Acta Mater. 51(1), 17–30 (2003)CrossRefGoogle Scholar
  30. 30.
    Scardia L., Zeppieri C.I.: Line-tension model for plasticity as the Γ-limit of a nonlinear dislocation energy. SIAM J. Math. Anal. 44(4), 2372–2400 (2012)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Shilkrot L.E., Miller R.E., Curtin W.A.: Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J. Mech. Phys. Solids 52, 755–787 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Sinclair, J.E.: Improved atomistic model of a BCC dislocation core. J. Appl. Phys. 42, 5231 (1971)Google Scholar
  33. 33.
    Taylor, G.I.: The mechanism of plastic deformation of crystals. Part I. Theoretical. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 145(855) (1934)Google Scholar
  34. 34.
    Vítek V., Perrin R.C., Bowen D.K.: The core structure of \({\frac12(111)}\) screw dislocations in BCC crystals. Philos. Mag. 21(173), 1049–1073 (1970)ADSCrossRefGoogle Scholar
  35. 35.
    Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci. École Norm. Sup. (3), 24 Google Scholar
  36. 36.
    Voskoboinikov R.E., Chapman S.J., Ockendon J.R., Allwright D.J.: Continuum and discrete models of dislocation pile-ups. I. Pile-up at a lock. J. Mech. Phys. Solids 55(9), 2007–2025 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.Mathematics InstituteZeeman Building University of WarwickCoventryUK

Personalised recommendations