Archive for Rational Mechanics and Analysis

, Volume 212, Issue 3, pp 1037–1064 | Cite as

Analytical Validation of a Continuum Model for Epitaxial Growth with Elasticity on Vicinal Surfaces



Within the context of heteroepitaxial growth of a film onto a substrate, terraces and steps self-organize according to misfit elasticity forces. Discrete models of this behavior were developed by Duport et al. (J Phys I 5:1317–1350, 1995) and Tersoff et al. (Phys Rev Lett 75:2730–2733, 1995). A continuum limit of these was in turn derived by Xiang (SIAM J Appl Math 63:241–258, 2002) (see also the work of Xiang and Weinan Phys Rev B 69:035409-1–035409-16, 2004; Xu and Xiang SIAM J Appl Math 69:1393–1414, 2009). In this paper we formulate a notion of weak solution to Xiang’s continuum model in terms of a variational inequality that is satisfied by strong solutions. Then we prove the existence of a weak solution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Butzer, P.L., Nessel, R.J.: Fourier analysis and approximation. In: One-Dimensional Theory, vol 1. Academic Press, New York (1971)Google Scholar
  2. 2.
    Duport C., Politi P., Villain J.: Growth instabilities induced by elasticity in a vicinal surface. J. Phys. I 5, 1317–1350 (1995)Google Scholar
  3. 3.
    Fonseca, I., Leoni, G.: Modern methods in the calculus of variations: L p spaces. In: Springer Monographs in Mathematics. Springer, New York (2007)Google Scholar
  4. 4.
    Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969)Google Scholar
  5. 5.
    Tersoff J., Phang Y.H., Zhang Z., Lagally M.G.: Step-bunching instability of vicinal surfaces under stress. Phys. Rev. Lett. 75, 2730–2733 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    Xiang Y.: Derivation of a continuum model for epitaxial growth with elasticity on vicinal surface. SIAM J. Appl. Math. 63, 241–258 (2002)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Xiang, Y., Weinan, E.: Misfit elastic energy and a continuum model for epitaxial growth with elasticity on vicinal surfaces. Phys. Rev. B 69, 035409-1–035409-16 (2004)Google Scholar
  8. 8.
    Xu H., Xiang Y.: Derivation of a continuum model for the long-range elastic interaction on stepped epitaxial surfaces in 2 + 1 dimensions. SIAM J. Appl. Math. 69(5), 1393–1414 (2009)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators. Springer-Verlag, New York (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.SISSATriesteItaly
  2. 2.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations