Advertisement

Archive for Rational Mechanics and Analysis

, Volume 212, Issue 2, pp 359–414 | Cite as

A Perturbation Argument for a Monge–Ampère Type Equation Arising in Optimal Transportation

  • Luis Caffarelli
  • María del Mar GonzálezEmail author
  • Truyen Nguyen
Article

Abstract

We prove some interior regularity results for potential functions of optimal transportation problems with power costs. The main point is that our problem is equivalent to a new optimal transportation problem whose cost function is a sufficiently small perturbation of the quadratic cost, but it does not satisfy the well known condition (A.3) guaranteeing regularity. The proof consists in a perturbation argument from the standard Monge–Ampère equation in order to obtain, first, interior C1,1 estimates for the potential and, second, interior Hölder estimates for second derivatives. In particular, we take a close look at the geometry of optimal transportation when the cost function is close to quadratic in order to understand how the equation degenerates near the boundary.

Keywords

Convex Function Minimum Point Type Equation Comparison Principle Universal Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, (2005)Google Scholar
  2. 2.
    Brenier Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Caffarelli L., Li Y.Y.: A Liouville theorem for solutions of the Monge–Ampère equation with periodic data. Ann. Inst. H. Poincaré Anal. Non Linéaire, 21(1), 97–120 (2004)ADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    Caffarelli L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) 130(1), 189–213 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Caffarelli L.A.: Interior W 2, p estimates for solutions of the Monge–Ampère equation. Ann. Math. (2) 131(1), 135–150 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Caffarelli L.A.: A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity. Ann. Math. (2) 131(1), 129–134 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Caffarelli L.A.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5(1), 99–104 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Caffarelli L.A.: Boundary regularity of maps with convex potentials. Commun. Pure Appl. Math. 45(9), 1141–1151 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Caffarelli, L.A.: Allocation maps with general cost functions. In Partial differential equations and applications, volume 177 of Lecture Notes in Pure and Appl. Math., pages 29–35. Dekker, New York, (1996)Google Scholar
  10. 10.
    Caffarelli L.A.: Boundary regularity of maps with convex potentials. . II. Ann. Math.(2) 144(3), 453–496 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Caffarelli, L.A.: A priori estimates and the geometry of the Monge Ampère equation. In Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), volume 2 of IAS/Park City Math. Ser., pages 5–63. Amer. Math. Soc., Providence, RI, (1996)Google Scholar
  12. 12.
    Caffarelli, L.A., Cabré, X.: Fully nonlinear elliptic equations, volume 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, (1995)Google Scholar
  13. 13.
    Caffarelli L.A., Gutiérrez C.E., Huang Q.: On the regularity of reflector antennas. Ann. Math. 167(1), 299–323 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    De Philippis, G., Figalli, A.: Partial regularity for optimal transport maps. Preprint, (2012)Google Scholar
  15. 15.
    Delanoë P.: Gradient rearrangement for diffeomorphisms of a compact manifold. Differential Geom. Appl. 20(2), 145–165 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Delanoë P., Ge Y.: Regularity of optimal transport on compact, locally nearly spherical, manifolds. J. Reine Angew. Math. 646, 65–115 (2010)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Figalli A., Kim Y.-H., McCann R.J.: Hölder Continuity and Injectivity of Optimal Maps. Arch. Ration. Mech. Anal. 209(3), 747–795 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Figalli, A., Kim, Y.-H., McCann, R.J.: Regularity of optimal transport maps on multiple products of spheres. J. Eur. Math. Soc. (JEMS) (2013)Google Scholar
  19. 19.
    Figalli A., Loeper G.: C 1 regularity of solutions of the Monge–Ampère equation for optimal transport in dimension two. Calc. Var. Partial Differ. Equ., 35(4), 537–550 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Figalli A., Rifford L.: Continuity of optimal transport maps and convexity of injectivity domains on small deformations of \({\mathbb{S}^ 2}\) . Comm. Pure Appl. Math. 62(12), 1670–1706 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Figalli A., Rifford L., Villani C.: On the Ma–Trudinger–Wang curvature on surfaces. Calc. Var. Partial Differ. Equ. 39(3–4), 307–332 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Figall A., Rifford L., Villani C.: Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds. Tohoku Math. J. (2) 63(4), 855–876 (2011)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Gangbo W., McCann R.J.: Optimal maps in Monge’s mass transport problem. C. R. Acad. Sci. Paris Sér. I Math. 321(12), 1653–1658 (1995)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Gangbo W., McCann R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (2001)zbMATHGoogle Scholar
  26. 26.
    Gutiérrez, C.E.: The Monge–Ampère equation. Progress in Nonlinear Differential Equations and their Applications, 44. Birkhäuser Boston Inc., Boston, MA, (2001)Google Scholar
  27. 27.
    Gutiérrez, C.E., Huang, Q., Nguyen, T.V.: Interior Hölder estimates for solutions of the Monge–Ampère equation. PreprintGoogle Scholar
  28. 28.
    Gutiérrez C.E., Nguyen T.V.: On Monge–Ampère type equations arising in optimal transportation problems.. Calc. Var. Partial Differ. Equ. 28(3), 275–316 (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Kim Y.-H., McCann R.J.: Continuity, curvature, and the general covariance of optimal transportation. J. Eur. Math. Soc. (JEMS) 12(4), 1009–1040 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Kim Y.-H., McCann R.J.: Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular). J. Reine Angew. Math. 664, 1–27 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Liu J.: Hölder regularity of optimal mappings in optimal transportation. Calc. Var. Partial Differ. Equ. 34, 435–451 (2009)CrossRefzbMATHGoogle Scholar
  32. 32.
    Liu J., Trudinger N.S., Wang X.-J.: Interior C 2,α regularity for potential functions in optimal transportation. Commun. Partial Differ. Equ. 35(1), 165–184 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Loeper G.: On the regularity of solutions of optimal transportation problems. Acta Math., 202(2), 241–283 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Loeper G.: Regularity of optimal maps on the sphere: the quadratic cost and the reflector antenna. Arch. Ration. Mech. Anal. 199(1), 269–289 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Ma X.-N., Trudinger N.S., Wang X.-J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177(2), 151–183 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Schneider, R.: Convex bodies: the Brunn-Minkowski theory. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993Google Scholar
  37. 37.
    Trudinger, N.S., Wang, X.-J.: On strict convexity and continuous differentiability of potential functions in optimal transportation. Arch. Ration. Mech. Anal. 192(3), 403–418 (2009)Google Scholar
  38. 38.
    Trudinger, N.S., Wang, X.-J.: On convexity notions in optimal transportation. Preprint, (2008)Google Scholar
  39. 39.
    Trudinger, N.S., Wang, X.-J.: On the second boundary value problem for Monge–Ampère type equations and optimal transportation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8(1), 143–174 (2009)Google Scholar
  40. 40.
    Villani, C.: Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, (2003)Google Scholar
  41. 41.
    Villani, C.: Optimal transport, Old and new, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, (2009)Google Scholar
  42. 42.
    Warren M.: Regularity for a log-concave to log-concave mass transfer problem with near Euclidean cost. Comm. Anal. Geom. 19(1), 191–208 (2011)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luis Caffarelli
    • 1
  • María del Mar González
    • 2
    Email author
  • Truyen Nguyen
    • 3
  1. 1.University of Texas at AustinAustinUSA
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.University of AkronAkronUSA

Personalised recommendations