Archive for Rational Mechanics and Analysis

, Volume 212, Issue 1, pp 219–239 | Cite as

A Regularity Criterion for the Weak Solutions to the Navier–Stokes–Fourier System

  • Eduard Feireisl
  • Antonín Novotný
  • Yongzhong Sun
Article

Abstract

We show that any weak solution to the full Navier–Stokes–Fourier system emanating from the data belonging to the Sobolev space W 3,2 remains regular as long as the velocity gradient is bounded. The proof is based on the weak-strong uniqueness property and parabolic a priori estimates for the local strong solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992). Teubner-Texte Math., vol. 133, pp. 9–126. Teubner, Stuttgart, 1993Google Scholar
  2. 2.
    Amann H.: Linear and quasilinear parabolic problems, I. Birkhäuser Verlag, Basel (1995)CrossRefGoogle Scholar
  3. 3.
    Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94(1), 61–66 (1984)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bresch D., Desjardins B.: Stabilité de solutions faibles globales pour les équations de Navier-Stokes compressibles avec température. C.R. Acad. Sci. Paris 343, 219–224 (2006)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bresch D., Desjardins B.: On the existence of global weak solutions to the Navier-Ntokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Constantin P., Fefferman C.: Direction of vorticity and the problem of global regularity for the Navier-Stokes equations. Indiana Univ. Math. J. 42(3), 775–789 (1993)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Ericksen, J.L.: Introduction to the thermodynamics of solids, revised ed. Appl. Math. Sci. 131, Springer, New York, 1998Google Scholar
  8. 8.
    Fan J., Jiang S., Ou Y.: A blow-up criterion for compressible viscous heat-conductive flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 337–350 (2010)ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Feireisl E.: Stability of flows of real monoatomic gases. Commun. Partial Differ. Equ. 31, 325–348 (2006)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Feireisl E.: Relative entropies in thermodynamics of complete fluid systems. Discr. Cont. Dyn. Syst. Ser. A 32, 3059–3080 (2012)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Feireisl E., Novotný A.: Singular limits in thermodynamics of viscous fluids. Birkhäuser-Verlag, Basel (2009)CrossRefMATHGoogle Scholar
  12. 12.
    Feireisl E., Novotný A.: Weak-strong uniqueness property for the full Navier-Ntokes-Fourier system. Arch. Rational Mech. Anal. 204, 683–706 (2012)ADSCrossRefMATHGoogle Scholar
  13. 13.
    Hoff D.: Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Commun. Pure Appl. Math. 55, 1365–1407 (2002)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hoff D., Jenssen H.K.: Symmetric nonbarotropic flows with large data and forces. Arch. Rational Mech. Anal. 173, 297–343 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hoff D., Santos M.M.: Lagrangean structure and propagation of singularities in multidimensional compressible flow. Arch. Ration. Mech. Anal. 188(3), 509–543 (2008)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Krylov N.V.: Parabolic equations with VMO coefficients in Nobolev spaces with mixed norms. J. Funct. Anal. 250(2), 521–558 (2007)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Krylov N.V., Safonov M.V: A certain property of solutions of parabolic equations with measurable coefficients. Math. USSR Izvestija 16(2), 151–164 (1981)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Ladyzhenskaya, O.A., Solonnikov, V.A, Uralceva, N.N.: Linear and qusilinear equations of parabolic type. AMS Trans. Math. Monograph 23, Providence, 1968Google Scholar
  19. 19.
    Lions P.-L.: Mathematical Topics in Fluid Dynamics, Incompressible Models, vol 1. Oxford Science Publication, Oxford (1996)Google Scholar
  20. 20.
    Matsumura A.: Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first order dissipation. Publ. RIMS Kyoto Univ. 13, 349–379 (1977)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Matsumura A., Nishida T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)MATHMathSciNetGoogle Scholar
  22. 22.
    Matsumura A., Nishida T.: The initial value problem for the equations of motion of compressible and heat conductive fluids. Comm. Math. Phys. 89, 445–464 (1983)ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Prodi G.: Un teorema di unicità per le equazioni di Navier-Ntokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Serrin J.: On the interior regularity of weak solutions of the Navier-Ntokes equations. Arch. Rational Mech. Anal. 9, 187–195 (1962)ADSCrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Sun Y., Wang C., Zhang Z.: A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navies-Ntokes equations. Arch. Rational Mech. Anal. 201, 727–742 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Tani A.: On the first initial-boundary value problem of compressible viscous fluid motion. Publ. RIMS Kyoto Univ. 13, 193–253 (1977)CrossRefMATHGoogle Scholar
  27. 27.
    Valli, A.: A correction to the paper: An existence theorem for compressible viscous fluids [Ann. Mat. Pura Appl. (4) 130, 197–213 (1982) MR 83h:35112]. Ann. Mat. Pura Appl. (4), 132, 399–400 (1983), (1982)Google Scholar
  28. 28.
    Valli A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. 130(4), 197–213 (1982)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Valli A., Zajaczkowski M.: Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eduard Feireisl
    • 1
  • Antonín Novotný
    • 2
  • Yongzhong Sun
    • 3
  1. 1.Faculty of Mathematics and Physics, Mathematical InstituteCharles University in PraguePrague 8Czech Republic
  2. 2.IMATH Université du Sud Toulon-VarLa GardeFrance
  3. 3.Department of MathematicsNanjing UniversityNanjingChina

Personalised recommendations