Archive for Rational Mechanics and Analysis

, Volume 210, Issue 3, pp 773–811 | Cite as

Equivalent Theories of Liquid Crystal Dynamics

  • François Gay-Balmaz
  • Tudor S. Ratiu
  • Cesare Tronci
Article

Abstract

There are two competing descriptions of nematic liquid crystal dynamics: the Ericksen–Leslie director theory and the Eringen micropolar approach. Up to this day, these two descriptions have remained distinct in spite of several attempts to show that the micropolar theory includes the director theory. In this paper we show that this is the case by using symmetry reduction techniques and introducing a new system that is equivalent to the Ericksen–Leslie equations and may include disclination dynamics. The resulting equations of motion are verified to be completely equivalent, although one of the two different reductions offers the possibility of accounting for orientational defects. After applying these two approaches to the ordered micropolar theory of Lhuiller and Rey, all the results are eventually extended to flowing complex fluids, such as nematic liquid crystals.

References

  1. 1.
    Bloch A., Krishnaprasad P.S., Marsden J.E., Ratiu T.S.: The Euler-Poincaré equations and double bracket dissipation. Commun. Math. Phys. 175, 1–42 (1996)MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    Chandrasekhar S.: Liquid Crystals. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  3. 3.
    Chechkin, G.A., Ratiu, T.S., Romanov, M.S., Samokhin, V.N.: Existence and uniqueness theorems for the two-dimensional Ericksen-Leslie system, preprint (2013)Google Scholar
  4. 4.
    de Gennes P.G.: Short range order effects in the isotropic phase of nematics and cholesterics. Mol. Cryst. Liq. Cryst. 12, 193–214 (1971)CrossRefGoogle Scholar
  5. 5.
    Dzyaloshinskii I.E., Volovick G.E.: Poisson brackets in condensed matter systems. Ann. Phys. 125, 67–97 (1980)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Ellis D.C.P., Gay-Balmaz F., Holm D.D., Putkaradze V., Ratiu T.S.: Symmetry reduced dynamics of charged molecular strands. Arch. Rational Mech. Anal. 197(3), 811–902 (2010)MathSciNetADSCrossRefMATHGoogle Scholar
  7. 7.
    Eringen A.C.: An assessment of director and micropolar theories of liquid crystals. Int. J. Eng. Sci. 31, 605–616 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Eringen A.C.: A unified continuum theory of liquid crystals. ARI Int. J. Phys. Eng. Sci. 50, 73–84 (1997)Google Scholar
  9. 9.
    Gay-Balmaz F., Holm D.D., Ratiu T.S.: Variational principles for spin systems and the Kirchhoff rod. J. Geom. Mech. 1(4), 417–444 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gay-Balmaz F., Ratiu T.S.: The geometric structure of complex fluids. Adv. Appl. Math. 42(2), 176–275 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gay-Balmaz F., Ratiu T.S., Tronci C.: Euler-Poincaré approaches to nematodynamics. Acta Appl. Math. 120(1), 127–151 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gay-Balmaz, F., Tronci, C.: Reduction theory for symmetry breaking with applications to nematic systems. Physica D, 239(20-22), 1929–1947 (2010)Google Scholar
  13. 13.
    Gay-Balmaz F., Tronci C.: The helicity and vorticity of liquid-crystal flows. Proc. R. Soc. A, 467, 1197–1213 (2011)MathSciNetADSCrossRefMATHGoogle Scholar
  14. 14.
    Holm, D.D.: Euler-Poincaré dynamics of perfect complex fluids. Geometry, Dynamics and Mechanics: 60th Birthday Volume for J.E. Marsden (Eds. Holmes, P., Newton, P. and Weinstein, A.) Springer, Berlin, 2002Google Scholar
  15. 15.
    Holm D.D., Kupershmidt B.A.: The analogy between spin glasses and Yang-Mills fluids. J. Math. Phys. 29, 21–30 (1988)MathSciNetADSCrossRefMATHGoogle Scholar
  16. 16.
    Holm D.D., Marsden J.E., Ratiu T.S.: The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. in Math., 137, 1–81 (1998)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Holm D.D, Putkaradze V., Tronci C.: Double bracket dissipation in kinetic theory for particles with anisotropic interactions. Proc. R. Soc. Lond. Ser. A, 466(2122), 2991–3012 (2010)MathSciNetADSCrossRefMATHGoogle Scholar
  18. 18.
    Kleman M., Lavrentovich O.D.: Soft Matter Physics—An Introduction. Springer, Berlin (2003)Google Scholar
  19. 19.
    Leslie, F.M.: Theory of flow phenomena in liquid crystals. Advances in Liquid Crystals, Vol. 4. (Eds. Brown, G.H.) Academic Press, New York, 181, 1979Google Scholar
  20. 20.
    Lhuillier D., Rey A.D.: Nematic liquid crystals and ordered micropolar fluids. J. Non-Newtonian Fluid Mech. 120, 169–174 (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Marsden J.E., Ratiu T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1994)CrossRefMATHGoogle Scholar
  22. 22.
    Rey A.D., Denn M.M.: Dynamical phenomena in liquid-crystalline materials. Ann. Rev. Fluid Mech. 34, 233–266 (2002)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Tronci C.: Hybrid models for perfect complex fluids with multipolar interactions. J. Geom. Mech., 4(3), 333–363 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Volovik, G.E., Kats, E.I.: Nonlinear hydrodynamics of liquid crystals. Sov. Phys. JETP 54(1), 122–126Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • François Gay-Balmaz
    • 1
  • Tudor S. Ratiu
    • 2
  • Cesare Tronci
    • 3
  1. 1.CNRS/Laboratoire de Météorologie DynamiqueÉcole Normale SupérieureParis Cedex 05France
  2. 2.Section de Mathématiques and Bernoulli CenterÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Department of MathematicsUniversity of SurreyGuildfordUK

Personalised recommendations