Archive for Rational Mechanics and Analysis

, Volume 211, Issue 1, pp 113–187 | Cite as

Controllability of Two Coupled Wave Equations on a Compact Manifold

  • Belhassen Dehman
  • Jérôme Le RousseauEmail author
  • Matthieu Léautaud


We consider the exact controllability problem on a compact manifold Ω for two coupled wave equations, with a control function acting on one of them only. Action on the second wave equation is obtained through a coupling term. First, when the two waves propagate with the same speed, we introduce the time \({T_{\omega \rightarrow \mathcal{O} \rightarrow \omega}}\) for which all geodesics traveling in Ω go through the control region ω, then through the coupling region \({\mathcal{O}}\), and finally come back in ω. We prove that the system is controllable if and only if both ω and \({\mathcal{O}}\) satisfy the Geometric Control Condition and the control time is larger than \({T_{\omega \rightarrow \mathcal{O} \rightarrow \omega}}\). Second, we prove that the associated HUM control operator is a pseudodifferential operator and we exhibit its principal symbol. Finally, if the two waves propagate with different speeds, we give sharp sufficient controllability conditions on the functional spaces, the geometry of the sets ω and \({\mathcal{O}}\), and the minimal time.


Compact Manifold Pseudodifferential Operator Principal Symbol Unique Continuation Fourier Integral Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alabau-Boussouira F.: A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J. Control Optim. 42, 871–906 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alabau-Boussouira F.: Controllability of cascade coupled systems of multi-dimensional evolution pde’s by a reduced number of controls. C. R. Acad. Sci. Paris Sér I Math. 350, 577–582 (2012)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Alabau-Boussouira F., Léautaud M.: Indirect controllability of locally coupled systems under geometric conditions. C. R. Math. Acad. Sci. Paris 349(7–8), 395–400 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Alabau-Boussouira F., Léautaud M.: Indirect controllability of locally coupled wave-type systems and applications. J. Math. Pures Appl. 99, 544–576 (2013)MathSciNetGoogle Scholar
  5. 5.
    Ammar-Khodja F., Benabdallah A., González-Burgos M., de Teresa L.: Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1(3), 267–306 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Aronszajn N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9) 36, 235–249 (1957)Google Scholar
  7. 7.
    Aronszajn N., Krzywicki A., Szarski J.: A unique continuation theorem for exterior differential forms on Riemannian manifolds. Ark. Mat. 4, 417–453 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30, 1024–1065 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Burq, N.: Contrôlabilité exacte des ondes dans des ouverts peu réguliers. Asymptot. Anal. 14(2), 157–191 (1997)Google Scholar
  10. 10.
    Burq, N.: Mesures semi-classiques et mesures de défaut. Astérisque, 245: Exp. No. 826, 4, pp. 167–195, 1997. Séminaire Bourbaki, Vol. 1996/1997Google Scholar
  11. 11.
    Burq N., Gérard P.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Burq, N., Gérard, P.: Contrôle optimal des équations aux dérivées partielles. Cours de l’Ecole Polytechnique, 2002.
  13. 13.
    Burq, N., Lebeau, G.: Mesures de défaut de compacité, application au système de Lamé. Ann. Sci. école Norm. Sup. (4), 34(6), 817–870 (2001)Google Scholar
  14. 14.
    Chazarain, J., Piriou, A.: Introduction to the Theory of Linear Partial Differential Equations. North-Holland, Amsterdam, 1982Google Scholar
  15. 15.
    Dáger R.: Insensitizing controls for the 1-D wave equation. SIAM J. Control Optim. 45(5), 1758–1768 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Dáger, R., Zuazua, E.: Wave propagation, observation and control in 1−d flexible multi-structures, volume 50 of Mathématiques & Applications (Berlin). Springer, Berlin, 2006Google Scholar
  17. 17.
    Dencker N.: On the propagation of polarization sets for systems of real principal type. J. Funct. Anal. 46(3), 351–372 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Dehman B., Lebeau G.: Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim. 48(2), 521–550 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Dolecki S., Russell D.L.: A general theory of observation and control. SIAM J. Control Optim. 15(2), 185–220 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Ekeland, I., Temam, R.: Analyse convexe et problèmes variationnels. Dunod–Gauthier-Villars, Paris, 1974Google Scholar
  21. 21.
    Gérard P.: Microlocal defect measures. Commun. Partial Differ. Equ. 16(11), 1761–1794 (1991)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hörmander, L. The Analysis of Linear Partial Differential Operators, volume I. Springer-Verlag, Berlin, second edition, (1990)Google Scholar
  23. 23.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, volume III. Springer, 1985 (second printing, 1994)Google Scholar
  24. 24.
    Hörmander, L.: The analysis of linear partial differential operators. IV, volume 275 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin. Fourier integral operators, Corrected reprint of the 1985 original (1994)Google Scholar
  25. 25.
    Le Rousseau J., Lebeau G.: On Carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations. ESAIM Control Optim. Calc. Var. 18, 712–747 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Léautaud M.: Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems. J. Funct. Anal. 258, 2739–2778 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Lebeau, G.: Équation des ondes amorties. In: Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993), volume 19 of Math. Phys. Stud., pp. 73–109. Kluwer Academic Publishing, Dordrecht, 1996Google Scholar
  28. 28.
    Lebeau G., Nodet M.: Experimental study of the HUM control operator for linear waves. Exp. Math. 19(1), 93–120 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Lebeau G., Zuazua E.: Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ration. Mech. Anal. 148, 179–231 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Lerner, N.: Metrics on the Phase Space and Non-Selfadjoint Pseudo-differential Operators. Birkhäuser Verlag, Basel, 2010Google Scholar
  31. 31.
    Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, volume 8 of Recherches en Mathématiques Appliquées. Masson, Paris, 1988Google Scholar
  32. 32.
    Lions, J.-L.: Quelques notions dans l’analyse et le contrôle de systèmes à à données incomplètes. In: Proceedings of the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics (Spanish) (Málaga, 1989), pp. 43–54. Univ. Málaga, Málaga, 1990Google Scholar
  33. 33.
    Miller L.: The control transmutation method and the cost of fast controls. SIAM J. Control Optim. 45(2), 762–772 (2006)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983Google Scholar
  35. 35.
    Phung K.-D.: Observability and control of Schrödinger equations. SIAM J. Control Optim. 40(1), 211–230 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Phung, K.-D.: Observability of the Schrödinger equation. In: Carleman Estimates and Applications to Uniqueness and Control Theory (Cortona, 1999), volume 46 of Progr. Nonlinear Differential Equations Appl., pp. 165–177. Birkhäuser, Boston, 2001Google Scholar
  37. 37.
    Phung, K.-D.: Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equation under the Bardos–Lebeau–Rauch geometric control condition. Comput. Math. Appl. 44(10–11), 1289–1296 (2002)Google Scholar
  38. 38.
    Rauch J., Taylor M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Rosier L., de Teresa L.: Exact controllability of a cascade system of conservative equations. C. R. Math. Acad. Sci. Paris 349(5–6), 291–296 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Russell D.L.: A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52, 189–221 (1973)zbMATHGoogle Scholar
  41. 41.
    Seeley, R.T.: Complex powers of an elliptic operator. In: Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), pp. 288–307. Amer. Math. Soc., Providence, 1967Google Scholar
  42. 42.
    Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer, Berlin, 2001Google Scholar
  43. 43.
    Tartar L.: H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb. Sect. A 115(3–4), 193–230 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Taylor, M.E.: Pseudodifferential Operators. Princeton University Press, Princeton, 1981Google Scholar
  45. 45.
    Taylor, M.E.: Pseudodifferential Operators and Nonlinear PDE. Birkhäuser, Boston, 1991Google Scholar
  46. 46.
    Tebou L.: Locally distributed desensitizing controls for the wave equation. C. R. Math. Acad. Sci. Paris 346(7–8), 407–412 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Zuily, C.: Uniqueness and nonuniqueness in the Cauchy problem, volume 33 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, 1983Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Belhassen Dehman
    • 1
  • Jérôme Le Rousseau
    • 2
    Email author
  • Matthieu Léautaud
    • 3
  1. 1.Département de Mathématiques, Faculté des sciences de TunisUniversité de Tunis El ManarEl ManarTunisia
  2. 2.Laboratoire de Mathématiques, Analyse, Probabilités, ModélisationOrléans CNRS UMR 6628, Fédération Denis-Poisson, FR CNRS 2964, Université d’OrléansOrléans Cedex 2France
  3. 3.Université Paris-Sud 11, MathématiquesOrsay CedexFrance

Personalised recommendations