Advertisement

Archive for Rational Mechanics and Analysis

, Volume 209, Issue 1, pp 209–236 | Cite as

Wigner Measure Propagation and Conical Singularity for General Initial Data

  • Clotilde Fermanian-Kammerer
  • Patrick Gérard
  • Caroline Lasser
Article

Abstract

We study the evolution of Wigner measures of a family of solutions of a Schrödinger equation with a scalar potential displaying a conical singularity. Under a genericity assumption, classical trajectories exist and are unique, thus the question of the propagation of Wigner measures along these trajectories becomes relevant. We prove the propagation for general initial data.

Keywords

Transport Equation Conical Singularity Classical Trajectory Semiclassical Limit Singular Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosio, L., Figalli, A.: Almost everywhere well-posedness of continuity equations with measure initial data. C. R. Math. Acad. Sci. Paris 348(5–6), 249–252 (2010)Google Scholar
  2. 2.
    Ambrosio L., Figalli A., Friesecke G., Giannoulis J., Paul T.: Semiclassical limit of quantum dynamics with rough potentials and well posedness of transport equations with measure initial data. Commun. Pure. Appl. Math. 64(9), 1199–1242 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Athanassoulis A., Paul T.: Strong and weak semiclassical limits for some rough Hamiltonians Math. Models Methods Appl. Sci. 22(12), 1250038 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Colinde Verdière Y.: The level crossing problem in semi-classical analysis I. The symmetric case, Ann. Inst. Fourier 53(4), 1023–1054 (2003)CrossRefGoogle Scholar
  5. 5.
    Colinde Verdière Y.: The level crossing problem in semi-classical analysis II. The hermitian case, Ann. Inst. Fourier 54(5), 1423–1441 (2004)CrossRefGoogle Scholar
  6. 6.
    Fermanian Kammerer C.: Propagation of concentration effects near shock hypersurfaces for the heat equation. Asymptot. Anal. 24, 107–141 (2000)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Fermanian Kammerer, C.: Mesures semi-classiques deux-microlocales. C. R. Acad. Sci. Paris 331(Série 1), 515–518 (2000)Google Scholar
  8. 8.
    Fermanian Kammerer C.: Semiclassical analysis of generic codimension 3 crossings. Int. Math. Res. Not. 45, 2391–2435 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fermanian Kammerer C., Gérard P.: Mesures semi-classiques et croisements de modes. Bull. Soc. Math. France 130(1), 145–190 (2002)Google Scholar
  10. 10.
    Fermanian Kammerer P., Gérard P.: A Landau–Zener formula for non-degenerated involutive codimension three crossings. Ann. Henri Poincaré 4, 513–552 (2003)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Fermanian Kammerer C., Lasser C.: Wigner measures and codimension two crossings. J. Math. Phys. 44(2), 507–527 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Fermanian Kammerer C., Lasser C.: Propagation through generic level crossings: a surface hopping semigroup. SIAM J. Math. Anal. 140(1), 103–133 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Figalli, A., Ligabò, M., Paul, T.: Semiclassical limit for mixed states with singular and rough potentials. Indiana Univ. Math. J. (2013, to appear)Google Scholar
  14. 14.
    Gérard, P.:Mesures Semi-Classiques et Ondes de Bloch. Séminaire sur les Équations aux Dérivées Partielles, 1990–1991, Exp. (XVI), 19 (1991)Google Scholar
  15. 15.
    Gérard P., Leichtnam E.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71(2), 559–607 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gérard P., Markowich P., Mauser N., Poupaud F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. 50(4), 323–379 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Harris L., Lukkarinen J., Teufel S., Theil F.: Energy transport by acoustic modes of harmonic lattices. SIAM J. Math. Anal. 40(4), 1392–1418 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Pseudo-Differential Operators, Classics in Mathematics, Springer, Berlin, 1985Google Scholar
  19. 19.
    Kato, T.: Schrödinger operators with singular potentials. Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972). Israel J. Math. 13, 135–148 (1972)Google Scholar
  20. 20.
    Lasser C., Teufel S.: Propagation through conical crossings: an asymptotic semigroup. Commun. Pure Appl. Math. 58(9), 1188–1230 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    LionsP.-L. Paul T.: Sur les mesures de Wigner. Rev. Mat. Iberoam., 9(3), 553–618 (1993)Google Scholar
  22. 22.
    Mielke A.: Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner–Husimi transforms. Arch. Ration. Mech. Anal. 181, 401–448 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Nier F.: A semi-classical picture of quantum scattering. Ann. Sci. Ecole Norm. Sup. 29(4), 149–183 (1996)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zworski, M.: Semi-Classical Analysis, Graduate Studies in Mathematics, Vol. 138, AMS, Providence, 2012Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Clotilde Fermanian-Kammerer
    • 1
  • Patrick Gérard
    • 2
  • Caroline Lasser
    • 3
  1. 1.LAMA, UMR CNRS 8050, Université Paris-Est CréteilCréteil CedexFrance
  2. 2.Université Paris-SudOrsayFrance
  3. 3.Zentrum Mathematik-M3, Wissenschaftliches RechnenTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations