Archive for Rational Mechanics and Analysis

, Volume 208, Issue 1, pp 275–304

Spectral Analysis of the Neumann–Poincaré Operator and Characterization of the Stress Concentration in Anti-Plane Elasticity

  • Habib Ammari
  • Giulio Ciraolo
  • Hyeonbae Kang
  • Hyundae Lee
  • Kihyun Yun


When holes or hard elastic inclusions are closely located, stress which is the gradient of the solution to the anti-plane elasticity equation can be arbitrarily large as the distance between two inclusions tends to zero. It is important to precisely characterize the blow-up of the gradient of such an equation. In this paper we show that the blow-up of the gradient can be characterized by a singular function defined by the single layer potential of an eigenfunction corresponding to the eigenvalue 1/2 of a Neumann–Poincaré type operator defined on the boundaries of the inclusions. By comparing the singular function with the one corresponding to two disks osculating to the inclusions, we quantitatively characterize the blow-up of the gradient in terms of explicit functions. In electrostatics, our results apply to the electric field, which is the gradient of the solution to the conductivity equation, in the case where perfectly conducting or insulating inclusions are closely located.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammari, H., Ciraolo, G., Kang, H., Lee, H., Milton, G.: Spectral theory of a Neumann–Poincaré-type operator and analysis of the anomalous localized resonance, submitted. arXiv:1109.0479Google Scholar
  2. Ammari H., Kang H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory. Applied Mathematical Sciences, Vol. 162. Springer-Verlag, New York (2007)Google Scholar
  3. Ammari H., Kang H., Lee H., Lee J., Lim M.: Optimal bounds on the gradient of solutions to conductivity problems. J. Math. Pures Appl. 88, 307–324 (2007)MathSciNetMATHGoogle Scholar
  4. Ammari H., Kang H., Lee H., Lim M., Zribi H.: Decomposition theorems and fine estimates for electrical fields in the presence of closely located circular inclusions. J. Differ. Equ. 247, 2897–2912 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. Ammari H., Kang H., Lim M.: Gradient estimates for solutions to the conductivity problem. Math. Ann. 332(2), 277–286 (2005)MathSciNetMATHCrossRefGoogle Scholar
  6. Babuska I., Andersson B., Smith P., Levin K.: Damage analysis of fiber composites. I. Statistical analysis on fiber scale. Comput. Methods Appl. Mech. Eng. 172, 27–77 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  7. Bao E., Li Y.Y., Yin B.: Gradient estimates for the perfect conductivity problem. Arch. Ration. Mech. Anal. 193, 195–226 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. Bao E.S., Li Y.Y., Yin B.: Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions. Commun. Part. Differ. Equ. 35, 1982–2006 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. Bonnetier E., Triki F.: Pointwise bounds on the gradient and the spectrum of the Neumann–Poincaré operator: the case of 2 discs. Contemp. Math. 577, 81–92 (2012)MathSciNetCrossRefGoogle Scholar
  10. Bonnetier E., Vogelius M.: An elliptic regularity result for a composite medium with “touching” fibers of circular cross-section. SIAM J. Math. Anal. 31, 651–677 (2000)MathSciNetMATHCrossRefGoogle Scholar
  11. Budiansky B., Carrier G.F.: High shear stresses in stiff fiber composites. J. Appl. Mech. 51, 733–735 (1984)ADSMATHCrossRefGoogle Scholar
  12. Gorb Y., Novikov A.: Blow-up of solutions to a p-Laplace equation. SIAM Multiscale Model. Simul. 10, 727–743 (2012)MATHCrossRefGoogle Scholar
  13. Kang H., Seo J.K.: Layer potential technique for the inverse conductivity problem. Inverse Probl. 12, 267–278 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  14. Kang, H., Seo, J.K.: Recent progress in the inverse conductivity problem with single measurement. In: Inverse Problems and Related Fields. CRC Press, Boca Raton, FL, 69–80, 2000Google Scholar
  15. Khavinson D., Putinar M., Shapiro H.S.: Poincaré’s variational problem in potential theory. Arch. Ration. Mech. Anal. 185, 143–184 (2007)MathSciNetMATHCrossRefGoogle Scholar
  16. Keller J.B.: Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders. J. Appl. Phys. 34(4), 991–993 (1963)ADSMATHCrossRefGoogle Scholar
  17. Li Y.Y., Nirenberg L.: Estimates for elliptic system from composite material. Commun. Pure Appl. Math. LVI, 892–925 (2003)MathSciNetCrossRefGoogle Scholar
  18. Li Y.Y., Vogelius M.: Gradient estimates for solution to divergence form elliptic equation with discontinuous coefficients. Arch. Ration. Mech. Anal. 153, 91–151 (2000)MathSciNetMATHCrossRefGoogle Scholar
  19. Lim M., Yun K.: Blow-up of electric fields between closely spaced spherical perfect conductors. Commun. Part. Diff. Equ. 34, 1287–1315 (2009)MathSciNetMATHCrossRefGoogle Scholar
  20. Lim M., Yun K.: Strong influence of a small fiber on shear stress in fiber-reinforced composites. J. Differ. Equ. 250, 2402–2439 (2011)MathSciNetMATHCrossRefGoogle Scholar
  21. Yun K.: Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape. SIAM J. Appl. Math. 67, 714–730 (2007)MathSciNetMATHCrossRefGoogle Scholar
  22. Yun K.: Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross sections. J. Math. Anal. Appl. 350, 306–312 (2009)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Habib Ammari
    • 1
  • Giulio Ciraolo
    • 2
  • Hyeonbae Kang
    • 3
  • Hyundae Lee
    • 3
  • Kihyun Yun
    • 4
  1. 1.Department of Mathematics and ApplicationsEcole Normale SupérieureParisFrance
  2. 2.Dipartimento di Matematica e InformaticaUniversità di PalermoPalermoItaly
  3. 3.Department of MathematicsInha UniversityIncheonKorea
  4. 4.Department of MathematicsHankuk University of Foreign StudiesGyeonggi-doKorea

Personalised recommendations