Advertisement

Archive for Rational Mechanics and Analysis

, Volume 207, Issue 3, pp 919–968 | Cite as

Existence of a Weak Solution to a Nonlinear Fluid–Structure Interaction Problem Modeling the Flow of an Incompressible, Viscous Fluid in a Cylinder with Deformable Walls

  • Boris Muha
  • Suncica CanićEmail author
Article

Abstract

We study a nonlinear, unsteady, moving boundary, fluid–structure interaction (FSI) problem arising in modeling blood flow through elastic and viscoelastic arteries. The fluid flow, which is driven by the time-dependent pressure data, is governed by two-dimensional incompressible Navier–Stokes equations, while the elastodynamics of the cylindrical wall is modeled by the one-dimensional cylindrical Koiter shell model. Two cases are considered: the linearly viscoelastic and the linearly elastic Koiter shell. The fluid and structure are fully coupled (two-way coupling) via the kinematic and dynamic lateral boundary conditions describing continuity of velocity (the no-slip condition), and the balance of contact forces at the fluid–structure interface. We prove the existence of weak solutions to the two FSI problems (the viscoelastic and the elastic case) as long as the cylinder radius is greater than zero. The proof is based on a novel semi-discrete, operator splitting numerical scheme, known as the kinematically coupled scheme, introduced in Guidoboni et al. (J Comput Phys 228(18):6916–6937, 2009) to numerically solve the underlying FSI problems. The backbone of the kinematically coupled scheme is the well-known Marchuk–Yanenko scheme, also known as the Lie splitting scheme. We effectively prove convergence of that numerical scheme to a solution of the corresponding FSI problem.

Keywords

Weak Solution Boris Elastic Case Reference Domain Structural Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York, 1975Google Scholar
  2. 2.
    Barbu, V., Grujić, Z., Lasiecka, I., Tuffaha, A.: Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model. Fluids and Waves. Contemporary Mathematics, vol. 440. American Mathematical Society, Providence, 55–82, 2007Google Scholar
  3. 3.
    Barbu V., Grujić Z., Lasiecka I., Tuffaha A.: Smoothness of weak solutions to a nonlinear fluid-structure interaction model. Indiana Univ. Math. J. 57(3), 1173–1207 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Beirão da Veiga H.: On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6(1), 21–52 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Boulakia M.: Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid. C. R. Math. Acad. Sci. Paris 336(12), 985–990 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris. Théorie et applications. [Theory and applications] (1983)Google Scholar
  7. 7.
    Bukac, M., Canić, S., Glowinski, R., Tambaca, J., Quaini, A.: Fluid-structure interaction in blood flow allowing non-zero longitudinal structure displacement. J. Comput. Phys. (2012, accepted)Google Scholar
  8. 8.
    Canić, S., Muha, B., Bukac, M.: Stability of the kinematically coupled β-scheme for fluid-structure interaction problems in hemodynamics. arXiv:1205.6887v1 (2012, submitted)Google Scholar
  9. 9.
    Canić S., Tambaca J., Guidoboni G., Mikelić A., Hartley C.J., Rosenstrauch D.: Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67(1), 164–193 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Canić S., Hartley C.J., Rosenstrauch D., Tambaca J., Guidoboni G., Mikelić A.: Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics and experimental validation. Ann. Biomed. Eng. 34, 575–592 (2006)CrossRefGoogle Scholar
  11. 11.
    Chambolle A., Desjardins B., Esteban M.J., Grandmont C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7(3), 368–404 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Cheng C.H.A., Coutand D., Shkoller S.: Navier–Stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal. 39(3), 742–800 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Cheng C.H.A., Shkoller S.: The interaction of the 3D Navier-Stokes equations with a moving nonlinear Koiter elastic shell. SIAM J. Math. Anal. 42(3), 1094–1155 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ciarlet, P.G.: Mathematical Elasticity, vol. III. Theory of Shells. Studies in Mathematics and its Applications, vol. 29. North-Holland, Amsterdam, 2000Google Scholar
  15. 15.
    Ciarlet P.G., Lods V.: Asymptotic analysis of linearly elastic shells. III. Justification of Koiter’s shell equations. Arch. Rational Mech. Anal. 136(2), 119–162 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Conca C., Murat F., Pironneau O.: The Stokes and Navier-Stokes equations with boundary conditions involving the pressure. Jpn. J. Math. (N.S.) 20(2), 279–318 (1994)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Conca C., San Martín J., Tucsnak M.: Motion of a rigid body in a viscous fluid. C. R. Acad. Sci. Paris Sér. I Math. 328(6), 473–478 (1999)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Coutand D., Shkoller S.: Motion of an elastic solid inside an incompressible viscous fluid. Arch. Rational Mech. Anal. 176(1), 25–102 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Coutand D., Shkoller S.: The interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Rational Mech. Anal. 179(3), 303–352 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Cumsille P., Takahashi T.: Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Math. J. 58(133)(4), 961–992 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Desjardins B., Esteban M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Rational Mech. Anal. 146(1), 59–71 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Desjardins B., Esteban M.J., Grandmont C., Le Tallec P.: Weak solutions for a fluid-elastic structure interaction model. Rev. Mat. Complut. 14(2), 523–538 (2001)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Donea J.: Arbitrary Lagrangian-Eulerian finite element methods. Computational Methods for Transient Analysis. North-Holland, Amsterdam (1983)Google Scholar
  24. 24.
    Du Q., Gunzburger M.D., Hou L.S., Lee J.: Analysis of a linear fluid-structure interaction problem. Discrete Contin. Dyn. Syst. 9(3), 633–650 (2003)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Feireisl E.: On the motion of rigid bodies in a viscous compressible fluid. Arch. Rational Mech. Anal. 167(4), 281–308 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Fernández, M.A.: Incremental displacement-correction schemes for incompressible fluid-structure interaction: stability and convergence analysis. Numer. Math. doi: 10.1007/s00211-012-0481-9 (2012)
  27. 27.
    Formaggia L., Gerbeau J.F., Nobile F., Quarteroni A.: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7), 561–582 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations, vol. I. Linearized steady problems. Springer Tracts in Natural Philosophy, vol. 38. Springer, New York, 1994Google Scholar
  29. 29.
    Galdi, G.P.: Mathematical problems in classical and non-Newtonian fluid mechanics. Hemodynamical Flows. Oberwolfach Semin., vol. 37. Birkhäuser, Basel, 121–273, 2008Google Scholar
  30. 30.
    Glowinski, R.: Finite element methods for incompressible viscous flow. Handbook of Numerical Analysis, vol. 9 (Eds. Ciarlet, P.G., Lions, J.-L.). North-Holland, Amsterdam, 2003Google Scholar
  31. 31.
    Grandmont C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40(2), 716–737 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Guidoboni G., Glowinski R., Cavallini N., Cavallini N., Cavallini N.: Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Guidoboni G., Guidorzi M., Padula M.: Continuous dependence on initial data in fluid-structure motions. J. Math. Fluid Mech. 14(1), 1–32 (2012)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Hundertmark-Zauskova, A., Lukacova-Medvidova, M., Rusnakova G.: Fluid-structure interaction for shear-dependent non-Newtonian fluids. Topics in Mathematical Modeling and Analysis. Necas Center for Mathematical Modeling. Lecture Notes, vol. 7, 109–158, 2012Google Scholar
  35. 35.
    Kukavica I., Tuffaha A.: Solutions to a fluid-structure interaction free boundary problem. DCDS-A 32(4), 1355–1389 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Kukavica I., Tuffaha A., Ziane M.: Strong solutions for a fluid structure interaction system. Adv. Differ. Equ. 15(3–4), 231–254 (2010)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Lequeurre J.: Existence of strong solutions to a fluid-structure system. SIAM J. Math. Anal. 43(1), 389–410 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Li F.S.: Asymptotic analysis of linearly viscoelastic shells. Asympt. Anal. 36, 21–46 (2003)zbMATHGoogle Scholar
  39. 39.
    Li F.S.: Formal asymptotic analysis of linearly viscoelastic flexural shell equations. Adv. Math. 35, 289–302 (2006)Google Scholar
  40. 40.
    Li F.S.: Asymptotic analysis of linearly viscoelastic shells justification of Koiter’s shell equations. Asymptot. Anal. 54(1–2), 51–70 (2007)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181Google Scholar
  42. 42.
    Pontrelli, G.: A mathematical model of flow through a viscoelastic tube. Med. Biol. Eng. Comput. (2002)Google Scholar
  43. 43.
    Quaini A., Quarteroni A.: A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method. Math. Models Methods Appl. Sci. 17, 957–985 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Quarteroni A., Tuveri M., Veneziani A.: Computational vascular fluid dynamics: problems, models and methods. Survey article. Comput. Visual. Sci. 2, 163–197 (2000)zbMATHCrossRefGoogle Scholar
  45. 45.
    San Martín, J.A., Starovoitov V., Tucsnak M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Rational Mech. Anal. 161(2), 113–147 (2002)ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Temam R.: Sur la résolution exacte et approchée d’un problème hyperbolique non linéaire de T. Carleman. Arch. Rational Mech. Anal. 35, 351–362 (1969)MathSciNetADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2. North-Holland, Amsterdam, 1977Google Scholar
  48. 48.
    Velčić I.: Nonlinear weakly curved rod by Γ-convergence. J. Elast. 108, 125–150 (2012)zbMATHCrossRefGoogle Scholar
  49. 49.
    Xiao L.M.: Asymptotic analysis of dynamic problems for linearly elastic shells-justification of equations for dynamic Koiter Shells. Chin. Ann. Math. 22B, 267–274 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HoustonHoustonUSA

Personalised recommendations