Advertisement

Archive for Rational Mechanics and Analysis

, Volume 206, Issue 2, pp 707–724 | Cite as

Kinetic Relations for a Lattice Model of Phase Transitions

  • Hartmut Schwetlick
  • Johannes Zimmer
Article

Abstract

The aim of this article is to analyse travelling waves for a lattice model of phase transitions, specifically the Fermi–Pasta–Ulam chain with piecewise quadratic interaction potential. First, for fixed, sufficiently large subsonic wave speeds, we rigorously prove the existence of a family of travelling wave solutions. Second, it is shown that this family of solutions gives rise to a kinetic relation which depends on the jump in the oscillatory energy in the solution tails. Third, our constructive approach provides a very good approximate travelling wave solution.

Keywords

Lattice Model Wave Speed Travel Wave Solution Entropy Inequality Oscillatory Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeyaratne R., Knowles J.K.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Rational Mech. Anal. 114(2), 119–154 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Abeyaratne R., Knowles J.K.: Impact-induced phase transitions in thermoelastic solids. Philos. Trans. Roy. Soc. Lond. Ser. A 355(1726), 843–867 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Atkinson W., Cabrera N.: Motion of a Frenkel-Kontorowa dislocation in a one-dimensional crystal. Phys. Rev. 138(3A), A763–A766 (1965)CrossRefGoogle Scholar
  4. 4.
    Balk A.M., Cherkaev A.V., Slepyan L.I.: Dynamics of chains with non-monotone stress-strain relations. I. Model and numerical experiments. J. Mech. Phys. Solids 49(1), 131–148 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Balk A.M., Cherkaev A.V., Slepyan L.I.: Dynamics of chains with non-monotone stress-strain relations. II. Nonlinear waves and waves of phase transition. J. Mech. Phys. Solids 49(1), 149–171 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Earmme Y.Y., Weiner J.H.: Dislocation dynamics in the modified Frenkel-Kontorova model. J. Appl. Phys. 48(8), 3317–3331 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    Fermi, E., Pasta, J., Ulam, S.: Studies in nonlinear problems, I. Technical Report LA 1940, Los Alamos, 1955. Reproduced in: Newell, A.C. (Ed.) Nonlinear wave motion. Lectures in Applied Mathematics, vol. 15. American Mathematical Society, Providence, 1974Google Scholar
  8. 8.
    Herrmann M., Schwetlick H., Zimmer J.: On selection criteria for problems with moving inhomogeneities. Contin. Mech. Thermodyn. 24, 21–36 (2012)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Hildebrand F.E., Abeyaratne R.: An atomistic investigation of the kinetics of detwinning. J. Mech. Phys. Solids 56(4), 1296–1319 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kastner O., Ackland G.J.: Mesoscale kinetics produces martensitic microstructure. J. Mech. Phys. Solids 57(1), 109–121 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Kresse O., Truskinovsky L.: Mobility of lattice defects: discrete and continuum approaches. J. Mech. Phys. Solids 51(7), 1305–1332 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Penrose O.: Reversibility and irreversibility. Oberwolfach Reports 3, 2682–2685 (2006) WorkshopPDEs and MaterialsGoogle Scholar
  13. 13.
    Roytburd, V., Slemrod, M.: Dynamic phase transitions and compensated compactness. In Dynamical Problems in Continuum Physics (Minneapolis, Minn., 1985). Springer, New York, 289–304, 1987Google Scholar
  14. 14.
    Schwetlick, H., Sutton, D.C., Zimmer, J.: Nonexistence of slow heteroclinic travelling waves for a bistable Hamiltonian lattice model. J. Nonlinear Sci. (2012). doi: 10.1007/s00332-012-9131-8
  15. 15.
    Schwetlick H., Zimmer J.: Existence of dynamic phase transitions in a one-dimensional lattice model with piecewise quadratic interaction potential. SIAM J. Math Anal. 41(3), 1231–1271 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Slepyan L.I.: Feeding and dissipative waves in fracture and phase transition. I. Some 1D structures and a square-cell lattice. J. Mech. Phys. Solids 49(3), 469–511 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Slepyan L.I., Ayzenberg-Stepanenko M.V.: Localized transition waves in bistable-bond lattices. J. Mech. Phys. Solids 52(7), 1447–1479 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Slepyan L., Cherkaev A., Cherkaev E.: Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation. J. Mech. Phys. Solids 53(2), 407–436 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Sommerfeld, A.: Partial Differential Equations in Physics. Academic Press, New York, 1949. Translated by Ernst G. StrausGoogle Scholar
  20. 20.
    Sprekels J., Zheng S.M.: Global solutions to the equations of a Ginzburg-Landau theory for structural phase transitions in shape memory alloys. Phys. D 39(1), 59–76 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Truskinovski L.M.: Dynamics of nonequilibrium phase boundaries in a heat conducting non-linearly elastic medium. Prikl. Mat. Mekh. 51(6), 1009–1019 (1987)MathSciNetGoogle Scholar
  22. 22.
    Truskinovsky, L., Vainchtein, A.: Explicit kinetic relation from “first principles”. In Mechanics of Material Forces. Adv. Mech. Math., vol. 11. Springer, New York, 43–50, 2005Google Scholar
  23. 23.
    Truskinovsky L., Vainchtein A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Appl. Math. 66(2), 533–553 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Truskinovsky L., Vainchtein A.: Quasicontinuum models of dynamic phase transitions. Contin. Mech. Thermodyn. 18(1–2), 1–21 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Turteltaub S.: Adiabatic phase boundary propagation in a thermoelastic solid. Math. Mech. Solids 2(2), 117–142 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Mathematical SciencesUniversity of BathBathUK

Personalised recommendations