Archive for Rational Mechanics and Analysis

, Volume 207, Issue 1, pp 39–74 | Cite as

Non-Laminate Microstructures in Monoclinic-I Martensite

  • Isaac Vikram ChenchiahEmail author
  • Anja Schlömerkemper


We study the symmetrised rank-one convex hull of monoclinic-I martensite (a twelve-variant material) in the context of geometrically-linear elasticity. We construct sets of T 3s, which are (non-trivial) symmetrised rank-one convex hulls of three-tuples of pairwise incompatible strains. In addition, we construct a fivedimensional continuum of T 3s and show that its intersection with the boundary of the symmetrised rank-one convex hull is four-dimensional.We also show that there is another kind of monoclinic-I martensite with qualitatively different semi-convex hulls which, as far as we know, has not been experimentally observed. Our strategy is to combine understanding of the algebraic structure of symmetrised rank-one convex cones with knowledge of the faceting structure of the convex polytope formed by the strains.


Martensite Hull Convex Hull Convex Cone Transformation Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100(1), 13–52 (1987)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Barvinok, A.: A course in convexity. Graduate Studies in Mathematics. American Mathematical Society, 2003Google Scholar
  3. Bhattacharya K.: Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Contin. Mech. Thermodyn. 5(3), 205–242 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. Bhattacharya, K.: Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford Series on Materials Modelling. Oxford University Press, 2003Google Scholar
  5. Bhattacharya K., Kohn R.V.: Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials. Arch. Rational Mech. Anal. 139(2), 99–180 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. Bhattacharya K., Firoozye N.B., James R.D., Kohn R.V.: Restrictions on microstructure. Proc. R. Soc. Edinb. A: Math. 124(5), 843–878 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Brønsted A.: An introduction to convex polytopes. Graduate Texts in Mathematics. Springer, Berlin (1982)Google Scholar
  8. Chenchiah, I.V., Schlömerkemper, A.: Electronic supplementary material to this article available at
  9. Chenchiah, I.V., Schlömerkemper, A.: Monoclinic martensite: recoverable strains, zero-energy microstructures and relaxed energyGoogle Scholar
  10. Chenchiah, I.V., Schlömerkemper, A.: Symmetrised rank-one convexity in two-dimensional affine subspaces of three-dimensional strainsGoogle Scholar
  11. Dacorogna B.: Direct Methods in the Calculus of Variations, 2nd edn. Applied Mathematical Sciences.. Springer, Berlin (2007)Google Scholar
  12. Ewald G.: Combinatorial Convexity and Algebraic Geometry. Springer, Berlin (1996)zbMATHCrossRefGoogle Scholar
  13. Govindjee S., Hackl K., Heinen R.: An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Contin. Mech. Thermodyn. 18(7–8), 443–453 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. Gruber P.M.: Convex and Discrete Geometry. Grundlehren der mathematischen Wissenschaften, vol. 336. Springer, Berlin (2007)Google Scholar
  15. Grünbaum B.: Convex Polytopes, 2nd edn. Graduate Texts in Mathematics. Springer, Berlin (2003)Google Scholar
  16. Gurevich, G.B.: Foundations of the Theory of Algebraic Invariants. P. Noordhoff, 1964Google Scholar
  17. Hall G., Govindjee S., Šittner P., Novák V.: Simulation of cubic to monoclinic-II transformations in a single crystal Cu–Al–Ni tube. Int. J. Plasticity 23(1), 161– (2007)zbMATHCrossRefGoogle Scholar
  18. Hane K.F., Shield T.W.: Microstructure in the cubic to monoclinic transition in titanium-nickel shape memory alloys. Acta Mater. 47(9), 2603–2617 (1999)CrossRefGoogle Scholar
  19. Knowles K.M., Smith D.A.: The crystallography of the martensitic transformation in equiatomic nickel-titanium. Acta Metal. Mater. 29(1), 101–110 (1981)Google Scholar
  20. Kohn R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193–236 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  21. Kreiner, C.-F.: Algebraic methods for convexity notions in the calculus of variations. Master’s thesis, Technische Universität München, 2003Google Scholar
  22. Kreiner C.-F., Zimmer J., Chenchiah I.V.: Towards the efficient computation of effective properties of microstructured materials. Comptes Rendus Mecanique 332(3), 169–174 (2004)ADSCrossRefGoogle Scholar
  23. Müller, S.: Variational models for microstructure and phase transitions. Calculus of Variations and Geometric Evolution Problems: Lectures Given at the 2nd Session of the Centro Internazionale Matematico Estivo (CIME) held in Cetraro, Italy, June 15–22, 1996 (Eds. F. Bethuel, G. Huisken, S. Müller, K. Steffen). Springer, Berlin, 85–210, 1999Google Scholar
  24. Murat F.: Compacité par compensation: Condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Sér. 4 8(1), 69–102 (2007)MathSciNetGoogle Scholar
  25. Nam T.H., Saburi T., Nakata Y., Shimizu K.: Shape memory characteristics and lattice deformation in Ti-Ni-Cu alloys. Mater. Trans. JIM 31(12), 1050–1056 (1990)Google Scholar
  26. Olver, P.J.: Classical Invariant Theory. Cambridge University Press, 1999Google Scholar
  27. Otsuka K., Sawamura T., Shimizu K.: Crystal structure and internal defects of equiatomic TiNi martensite.. Physica Status Solidi (A) 5(2), 457–470 (1971)ADSCrossRefGoogle Scholar
  28. Pitteri M., Zanzotto G.: Generic and non-generic cubic-to-monoclinic transitions and their twins. Acta Mater. 46(1), 225–237 (1998)CrossRefGoogle Scholar
  29. Rockafellar R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, 1996Google Scholar
  30. Seo J.W., Schryvers D.: TEM investigation of the microstructure and defects of CuZr martensite. Part I: morphology and twin systems. Acta Mater 46(4), 1165–1175 (1998)Google Scholar
  31. Seo J.W., Schryvers D.: TEM investigation of the microstructure and defects of CuZr martensite. Part II: planar defects. Acta Mater. 46(4), 1177–1183 (1998)Google Scholar
  32. Shu Y., Bhattacharya K.: The influence of texture on the shape-memory effect in polycrystals. Acta Mater. 46(15), 5457–5473 (1997)CrossRefGoogle Scholar
  33. Sverák V.: Rank-one convexity does not imply quasiconvexity. Proc. R. Soc. Edinb. A: Math. 120(1–2), 185–189 (1992)zbMATHCrossRefGoogle Scholar
  34. Székelyhidi L. Jr.: Rank-one convex hulls in \({\mathbb{R}^{2 \times 2}}\) . Calculus Var. Partial Differ. Equ. 22(3), 253– (2005)zbMATHGoogle Scholar
  35. Tang Q., Zhang K.: Bounds for effective strains of geometrically linear elastic multiwell model. J. Math. Anal. Appl. 339(2), 1264–1276 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV (Ed. R. Knops). Pitman, 1979Google Scholar
  37. Tartar, L.: Some remarks on separately convex functions. Microstructure and Phase Transition (Eds. D. Kinderlehrer, R.D. James, M. Luskin, J.L. Ericksen). Springer, Berlin, 191–204, 1993Google Scholar
  38. Weinberg D.A: affine classification of cubic curves. Rocky Mt. J. Math. 18(3), 655–664 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  39. Zhang K.: Estimates of quasiconvex polytopes in the calculus of variations. J. Convex Anal. 13(1), 37–50 (2006)MathSciNetzbMATHGoogle Scholar
  40. Ziegler G.M.: Lectures on Polytopes. Springer, Berlin (1994)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of MathematicsUniversity of Bristol, University WalkBristolUK
  2. 2.Chair of Mathematics in the Sciences, Institute for MathematicsUniversity of WürzburgWürzburgGermany

Personalised recommendations